
groff
The GNU implementation of troff

Edition 1.18
Spring 2002

by Trent A. Fisher
and Werner Lemberg (bug-groff@gnu.org)

mailto:bug-groff@gnu.org

This manual documents GNU troff version 1.18.
Copyright c© 1994-2000, 2001, 2002 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software
Foundation; with no Invariant Sections, with the Front-Cover texts
being ‘A GNU Manual,” and with the Back-Cover Texts as in (a)
below. A copy of the license is included in the section entitled ‘GNU
Free Documentation License.”
(a) The FSF’s Back-Cover Text is: ‘You have freedom to copy and
modify this GNU Manual, like GNU software. Copies published by
the Free Software Foundation raise funds for GNU development.”

i

Table of Contents

1 Introduction . 1
1.1 What Is groff? . 1
1.2 History . 1
1.3 groff Capabilities. 3
1.4 Macro Packages . 4
1.5 Preprocessors . 4
1.6 Output Devices . 4
1.7 Credits . 5

2 Invoking groff . 7
2.1 Options . 7
2.2 Environment . 11
2.3 Macro Directories . 12
2.4 Font Directories . 13
2.5 Invocation Examples . 13

2.5.1 grog . 14

3 Tutorial for Macro Users 15
3.1 Basics . 15
3.2 Common Features . 17

3.2.1 Paragraphs . 17
3.2.2 Sections and Chapters . 18
3.2.3 Headers and Footers . 18
3.2.4 Page Layout . 18
3.2.5 Displays . 18
3.2.6 Footnotes and Annotations . 19
3.2.7 Table of Contents . 19
3.2.8 Indices . 19
3.2.9 Paper Formats . 19
3.2.10 Multiple Columns . 19
3.2.11 Font and Size Changes . 20
3.2.12 Predefined Strings . 20
3.2.13 Preprocessor Support . 20
3.2.14 Configuration and Customization 20

ii The GNU Troff Manual

4 Macro Packages . 21
4.1 ‘man’ . 21

4.1.1 Options . 21
4.1.2 Usage . 22
4.1.3 Macros to set fonts . 24
4.1.4 Miscellaneous macros . 25
4.1.5 Predefined strings . 25
4.1.6 Preprocessors in ‘man’ pages . 25

4.2 ‘mdoc’ . 26
4.3 ‘ms’ . 26

4.3.1 Introduction to ‘ms’ . 26
4.3.2 General structure of an ‘ms’ document 26
4.3.3 Document control registers . 27

Margin Settings . 27
Text Settings . 28
Paragraph Settings . 28
Footnote Settings . 29
Miscellaneous Number Registers 29

4.3.4 Cover page macros . 29
4.3.5 Body text . 31

4.3.5.1 Paragraphs . 31
4.3.5.2 Headings . 33
4.3.5.3 Highlighting . 33
4.3.5.4 Lists . 34
4.3.5.5 Indents . 38
4.3.5.6 Tab Stops . 38
4.3.5.7 Displays and keeps . 38
4.3.5.8 Tables, figures, equations, and references

. 40
4.3.5.9 An example multi-page table 41
4.3.5.10 Footnotes . 41

4.3.6 Page layout . 41
4.3.6.1 Headers and footers 42
4.3.6.2 Margins . 42
4.3.6.3 Multiple columns . 42
4.3.6.4 Creating a table of contents 43
4.3.6.5 Strings and Special Characters 44

4.3.7 Differences from at&t ‘ms’ . 47
4.3.7.1 troff macros not appearing in groff . . 47
4.3.7.2 groff macros not appearing in at&t

troff . 48
4.4 ‘me’ . 48
4.5 ‘mm’ . 48

iii

5 gtroff Reference. 49
5.1 Text . 49

5.1.1 Filling and Adjusting . 49
5.1.2 Hyphenation . 49
5.1.3 Sentences . 49
5.1.4 Tab Stops . 50
5.1.5 Implicit Line Breaks . 50

5.2 Input Conventions . 51
5.3 Measurements . 51

5.3.1 Default Units. 52
5.4 Expressions . 52
5.5 Identifiers . 54
5.6 Embedded Commands . 56

5.6.1 Requests . 56
5.6.1.1 Request Arguments 57

5.6.2 Macros . 58
5.6.3 Escapes . 58

5.6.3.1 Comments . 60
5.7 Registers . 61

5.7.1 Setting Registers . 61
5.7.2 Interpolating Registers . 63
5.7.3 Auto-increment . 64
5.7.4 Assigning Formats . 65
5.7.5 Built-in Registers . 66

5.8 Manipulating Filling and Adjusting . 68
5.9 Manipulating Hyphenation . 71
5.10 Manipulating Spacing . 76
5.11 Tabs and Fields . 77

5.11.1 Leaders . 80
5.11.2 Fields . 81

5.12 Character Translations . 82
5.13 Troff and Nroff Mode . 86
5.14 Line Layout . 87
5.15 Line Control . 90
5.16 Page Layout . 91
5.17 Page Control . 93
5.18 Fonts . 95

5.18.1 Changing Fonts . 95
5.18.2 Font Families . 96
5.18.3 Font Positions . 98
5.18.4 Using Symbols . 99
5.18.5 Special Fonts . 103
5.18.6 Artificial Fonts . 103
5.18.7 Ligatures and Kerning . 106

5.19 Sizes . 109
5.19.1 Changing Type Sizes. 109

iv The GNU Troff Manual

5.19.2 Fractional Type Sizes . 111
5.20 Strings . 113
5.21 Conditionals and Loops . 117

5.21.1 Operators in Conditionals . 117
5.21.2 if-else . 118
5.21.3 while . 119

5.22 Writing Macros . 121
5.22.1 Copy-in Mode . 123
5.22.2 Parameters. 123

5.23 Page Motions . 125
5.24 Drawing Requests . 129
5.25 Traps . 133

5.25.1 Page Location Traps . 133
5.25.2 Diversion Traps . 135
5.25.3 Input Line Traps . 136
5.25.4 Blank Line Traps . 136
5.25.5 End-of-input Traps . 136

5.26 Diversions . 137
5.27 Environments . 141
5.28 Suppressing output . 143
5.29 Colors . 144
5.30 I/O . 145
5.31 Postprocessor Access . 149
5.32 Miscellaneous . 150
5.33 gtroff Internals . 152
5.34 Debugging . 154

5.34.1 Warnings . 157
5.35 Implementation Differences . 159

6 Preprocessors . 163
6.1 geqn . 163

6.1.1 Invoking geqn . 163
6.2 gtbl . 163

6.2.1 Invoking gtbl . 163
6.3 gpic . 163

6.3.1 Invoking gpic . 163
6.4 ggrn . 163

6.4.1 Invoking ggrn . 163
6.5 grap . 163
6.6 grefer . 163

6.6.1 Invoking grefer . 163
6.7 gsoelim . 163

6.7.1 Invoking gsoelim . 163

v

7 Output Devices . 165
7.1 Special Characters . 165
7.2 grotty . 165

7.2.1 Invoking grotty . 165
7.3 grops . 165

7.3.1 Invoking grops . 165
7.3.2 Embedding PostScript . 165

7.4 grodvi . 165
7.4.1 Invoking grodvi . 165

7.5 grolj4 . 165
7.5.1 Invoking grolj4 . 165

7.6 grolbp . 165
7.6.1 Invoking grolbp . 165

7.7 grohtml . 165
7.7.1 Invoking grohtml . 165
7.7.2 grohtml specific registers and strings 166

7.8 gxditview . 166
7.8.1 Invoking gxditview . 166

8 File formats . 167
8.1 gtroff Output . 167

8.1.1 Language Concepts . 167
8.1.1.1 Separation . 168
8.1.1.2 Argument Units . 168
8.1.1.3 Document Parts . 169

8.1.2 Command Reference . 169
8.1.2.1 Comment Command 169
8.1.2.2 Simple Commands 170
8.1.2.3 Graphics Commands 172
8.1.2.4 Device Control Commands 175
8.1.2.5 Obsolete Command 177

8.1.3 Intermediate Output Examples 178
8.1.4 Output Language Compatibility 180

8.2 Font Files . 180
8.2.1 ‘DESC’ File Format . 181
8.2.2 Font File Format . 182

9 Installation . 187

A Copying This Manual . 189
A.1 GNU Free Documentation License . 189

A.1.1 ADDENDUM: How to use this License for your
documents . 196

vi The GNU Troff Manual

B Request Index . 197

C Escape Index . 201

D Operator Index . 203

E Register Index. 205

F Macro Index . 207

G String Index. 209

H Glyph Name Index . 211

I Font File Keyword Index 213

J Program and File Index 215

K Concept Index. 217

Chapter 1: Introduction 1

1 Introduction

GNU troff (or groff) is a system for typesetting documents. troff is
very flexible and has been in existence (and use) for about 3 decades. It is
quite widespread and firmly entrenched in the unix community.

1.1 What Is groff?

groff belongs to an older generation of document preparation systems,
which operate more like compilers than the more recent interactive wysi-
wyg1 systems. groff and its contemporary counterpart, TEX, both work
using a batch paradigm: The input (or source) files are normal text files
with embedded formatting commands. These files can then be processed by
groff to produce a typeset document on a variety of devices.

Likewise, groff should not be confused with a word processor, since that
term connotes an integrated system that includes an editor and a text for-
matter. Also, many word processors follow the wysiwyg paradigm discussed
earlier.

Although wysiwyg systems may be easier to use, they have a number
of disadvantages compared to troff:
• They must be used on a graphics display to work on a document.
• Most of the wysiwyg systems are either non-free or are not very

portable.
• troff is firmly entrenched in all unix systems.
• It is difficult to have a wide range of capabilities available within the

confines of a GUI/window system.
• It is more difficult to make global changes to a document.

“GUIs normally make it simple to accomplish simple actions
and impossible to accomplish complex actions.” –Doug Gwyn
(22/Jun/91 in comp.unix.wizards)

1.2 History

troff can trace its origins back to a formatting program called runoff,
written by J. E. Saltzer, which ran on MIT’s CTSS operating system in the
mid-sixties. This name came from the common phrase of the time “I’ll run
off a document.” Bob Morris ported it to the 635 architecture and called the
program roff (an abbreviation of runoff). It was rewritten as rf for the
PDP-7 (before having unix), and at the same time (1969), Doug McIllroy
rewrote an extended and simplified version of roff in the bcpl programming
language.

1 What You See Is What You Get

2 The GNU Troff Manual

The first version of unix was developed on a PDP-7 which was sitting
around Bell Labs. In 1971 the developers wanted to get a PDP-11 for fur-
ther work on the operating system. In order to justify the cost for this
system, they proposed that they would implement a document formatting
system for the at&t patents division. This first formatting program was a
reimplementation of McIllroy’s roff, written by J. F. Ossanna.

When they needed a more flexible language, a new version of roff called
nroff (“Newer roff”) was written. It had a much more complicated syntax,
but provided the basis for all future versions. When they got a Graphic
Systems CAT Phototypesetter, Ossanna wrote a version of nroff that would
drive it. It was dubbed troff, for “typesetter roff”, although many people
have speculated that it actually means “Times roff” because of the use
of the Times font family in troff by default. As such, the name troff is
pronounced ‘t-roff’ rather than ‘trough’.

With troff came nroff (they were actually the same program except
for some ‘#ifdef’s), which was for producing output for line printers and
character terminals. It understood everything troff did, and ignored the
commands which were not applicable (e.g. font changes).

Since there are several things which cannot be done easily in troff, work
on several preprocessors began. These programs would transform certain
parts of a document into troff, which made a very natural use of pipes in
unix.

The eqn preprocessor allowed mathematical formulæ to be specified in
a much simpler and more intuitive manner. tbl is a preprocessor for for-
matting tables. The refer preprocessor (and the similar program, bib)
processes citations in a document according to a bibliographic database.

Unfortunately, Ossanna’s troff was written in PDP-11 assembly lan-
guage and produced output specifically for the CAT phototypesetter. He
rewrote it in C, although it was now 7000 lines of uncommented code and
still dependent on the CAT. As the CAT became less common, and was no
longer supported by the manufacturer, the need to make it support other
devices became a priority. However, before this could be done, Ossanna was
killed in a car accident.

So, Brian Kernighan took on the task of rewriting troff. The newly
rewritten version produced device independent code which was very easy for
postprocessors to read and translate to the appropriate printer codes. Also,
this new version of troff (called ditroff for “device independent troff”)
had several extensions, which included drawing functions.

Due to the additional abilities of the new version of troff, several new
preprocessors appeared. The pic preprocessor provides a wide range of
drawing functions. Likewise the ideal preprocessor did the same, although
via a much different paradigm. The grap preprocessor took specifications
for graphs, but, unlike other preprocessors, produced pic code.

Chapter 1: Introduction 3

James Clark began work on a GNU implementation of ditroff in
early 1989. The first version, groff 0.3.1, was released June 1990. groff
included:
• A replacement for ditroff with many extensions.
• The soelim, pic, tbl, and eqn preprocessors.
• Postprocessors for character devices, PostScript, TEX DVI, and

X Windows. GNU troff also eliminated the need for a separate nroff
program with a postprocessor which would produce ascii output.

• A version of the ‘me’ macros and an implementation of the ‘man’ macros.

Also, a front-end was included which could construct the, sometimes
painfully long, pipelines required for all the post- and preprocessors.

Development of GNU troff progressed rapidly, and saw the additions
of a replacement for refer, an implementation of the ‘ms’ and ‘mm’ macros,
and a program to deduce how to format a document (grog).

It was declared a stable (i.e. non-beta) package with the release of
version 1.04 around November 1991.

Beginning in 1999, groff has new maintainers (the package was an or-
phan for a few years). As a result, new features and programs like grn,
a preprocessor for gremlin images, and an output device to produce html
output have been added.

1.3 groff Capabilities

So what exactly is groff capable of doing? groff provides a wide range of
low-level text formatting operations. Using these, it is possible to perform a
wide range of formatting tasks, such as footnotes, table of contents, multiple
columns, etc. Here’s a list of the most important operations supported by
groff:
• text filling, adjusting, and centering
• hyphenation
• page control
• font and glyph size control
• vertical spacing (e.g. double-spacing)
• line length and indenting
• macros, strings, diversions, and traps
• number registers
• tabs, leaders, and fields
• input and output conventions and character translation
• overstrike, bracket, line drawing, and zero-width functions
• local horizontal and vertical motions and the width function
• three-part titles

4 The GNU Troff Manual

• output line numbering
• conditional acceptance of input
• environment switching
• insertions from the standard input
• input/output file switching
• output and error messages

1.4 Macro Packages

Since groff provides such low-level facilities, it can be quite difficult
to use by itself. However, groff provides a macro facility to specify how
certain routine operations (e.g. starting paragraphs, printing headers and
footers, etc.) should be done. These macros can be collected together into a
macro package. There are a number of macro packages available; the most
common (and the ones described in this manual) are ‘man’, ‘mdoc’, ‘me’, ‘ms’,
and ‘mm’.

1.5 Preprocessors

Although groff provides most functions needed to format a document,
some operations would be unwieldy (e.g. to draw pictures). Therefore, pro-
grams called preprocessors were written which understand their own lan-
guage and produce the necessary groff operations. These preprocessors
are able to differentiate their own input from the rest of the document via
markers.

To use a preprocessor, unix pipes are used to feed the output from the
preprocessor into groff. Any number of preprocessors may be used on a
given document; in this case, the preprocessors are linked together into one
pipeline. However, with groff, the user does not need to construct the pipe,
but only tell groff what preprocessors to use.

groff currently has preprocessors for producing tables (tbl), typesetting
equations (eqn), drawing pictures (pic and grn), and for processing bibli-
ographies (refer). An associated program which is useful when dealing with
preprocessors is soelim.

A free implementation of grap, a preprocessor for drawing graphs, can
be obtained as an extra package; groff can use grap also.

There are other preprocessors in existence, but, unfortunately, no free
implementations are available. Among them are preprocessors for drawing
mathematical pictures (ideal) and chemical structures (chem).

1.6 Output Devices

groff actually produces device independent code which may be fed
into a postprocessor to produce output for a particular device. Currently,

Chapter 1: Introduction 5

groff has postprocessors for PostScript devices, character terminals,
X Windows (for previewing), TEX DVI format, HP LaserJet 4 and Canon
LBP printers (which use capsl), and html.

1.7 Credits

Large portions of this manual were taken from existing documents, most
notably, the manual pages for the groff package by James Clark, and Eric
Allman’s papers on the ‘me’ macro package.

The section on the ‘man’ macro package is partly based on Susan G.
Kleinmann’s ‘groff_man’ manual page written for the Debian GNU/Linux
system.

Larry Kollar contributed the section in the ‘ms’ macro package.

6 The GNU Troff Manual

Chapter 2: Invoking groff 7

2 Invoking groff

This section focuses on how to invoke the groff front end. This front end
takes care of the details of constructing the pipeline among the preprocessors,
gtroff and the postprocessor.

It has become a tradition that GNU programs get the prefix ‘g’ to distin-
guish it from its original counterparts provided by the host (see Section 2.2
[Environment], page 11, for more details). Thus, for example, geqn is GNU
eqn. On operating systems like GNU/Linux or the Hurd, which don’t con-
tain proprietary versions of troff, and on MS-DOS/MS-Windows, where
troff and associated programs are not available at all, this prefix is omit-
ted since GNU troff is the only used incarnation of troff. Exception:
‘groff’ is never replaced by ‘roff’.

In this document, we consequently say ‘gtroff’ when talking about the
GNU troff program. All other implementations of troff are called at&t
troff which is the common origin of all troff derivates (with more or less
compatible changes). Similarly, we say ‘gpic’, ‘geqn’, etc.

2.1 Options

groff normally runs the gtroff program and a postprocessor appropri-
ate for the selected device. The default device is ‘ps’ (but it can be changed
when groff is configured and built). It can optionally preprocess with any
of gpic, geqn, gtbl, ggrn, grap, grefer, or gsoelim.

This section only documents options to the groff front end. Many of
the arguments to groff are passed on to gtroff, therefore those are also
included. Arguments to pre- or postprocessors can be found in Section 6.3.1
[Invoking gpic], page 163, Section 6.1.1 [Invoking geqn], page 163, Sec-
tion 6.2.1 [Invoking gtbl], page 163, Section 6.4.1 [Invoking ggrn], page 163,
Section 6.6.1 [Invoking grefer], page 163, Section 6.7.1 [Invoking gsoelim],
page 163, Section 7.2.1 [Invoking grotty], page 165, Section 7.3.1 [Invoking
grops], page 165, Section 7.7.1 [Invoking grohtml], page 165, Section 7.4.1
[Invoking grodvi], page 165, Section 7.5.1 [Invoking grolj4], page 165, Sec-
tion 7.6.1 [Invoking grolbp], page 165, and Section 7.8.1 [Invoking gxditview],
page 166.

The command line format for groff is:
groff [-abceghilpstvzCEGNRSUVXZ] [-Fdir] [-mname]

[-Tdef] [-ffam] [-wname] [-Wname]
[-Mdir] [-dcs] [-rcn] [-nnum]
[-olist] [-Parg] [-Larg] [-Idir]
[files...]

The command line format for gtroff is as follows.

8 The GNU Troff Manual

gtroff [-abcivzCERU] [-wname] [-Wname] [-dcs]
[-ffam] [-mname] [-nnum]
[-olist] [-rcn] [-Tname]
[-Fdir] [-Mdir] [files...]

Obviously, many of the options to groff are actually passed on to gtroff.
Options without an argument can be grouped behind a single ‘-’. A

filename of ‘-’ denotes the standard input. It is possible to have whitespace
between an option and its parameter.

The grog command can be used to guess the correct groff command to
format a file.

Here’s the description of the command-line options:

‘-h’ Print a help message.

‘-e’ Preprocess with geqn.

‘-t’ Preprocess with gtbl.

‘-g’ Preprocess with ggrn.

‘-G’ Preprocess with grap.

‘-p’ Preprocess with gpic.

‘-s’ Preprocess with gsoelim.

‘-c’ Suppress color output.

‘-R’ Preprocess with grefer. No mechanism is provided for passing
arguments to grefer because most grefer options have equiva-
lent commands which can be included in the file. See Section 6.6
[grefer], page 163, for more details.
Note that gtroff also accepts a ‘-R’ option, which is not accessi-
ble via groff. This option prevents the loading of the ‘troffrc’
and ‘troffrc-end’ files.

‘-v’ Make programs run by groff print out their version number.

‘-V’ Print the pipeline on stdout instead of executing it.

‘-z’ Suppress output from gtroff. Only error messages are printed.

‘-Z’ Do not postprocess the output of gtroff. Normally groff au-
tomatically runs the appropriate postprocessor.

‘-Parg ’ Pass arg to the postprocessor. Each argument should be passed
with a separate ‘-P’ option. Note that groff does not prepend
‘-’ to arg before passing it to the postprocessor.

‘-l’ Send the output to a spooler for printing. The command used for
this is specified by the print command in the device description
file (see Section 8.2 [Font Files], page 180, for more info). If not
present, ‘-l’ is ignored.

Chapter 2: Invoking groff 9

‘-Larg ’ Pass arg to the spooler. Each argument should be passed with a
separate ‘-L’ option. Note that groff does not prepend a ‘-’ to
arg before passing it to the postprocessor. If the print keyword
in the device description file is missing, ‘-L’ is ignored.

‘-Tdev ’ Prepare output for device dev. The default device is ‘ps’, unless
changed when groff was configured and built. The following
are the output devices currently available:

ps For PostScript printers and previewers.

dvi For TEX DVI format.

X75 For a 75 dpi X11 previewer.

X75-12 For a 75 dpi X11 previewer with a 12 pt base font in
the document.

X100 For a 100 dpi X11 previewer.

X100-12 For a 100 dpi X11 previewer with a 12 pt base font
in the document.

ascii For typewriter-like devices using the (7-bit) ascii
character set.

latin1 For typewriter-like devices that support the Latin-1
(ISO 8859-1) character set.

utf8 For typewriter-like devices which use the Unicode
(ISO 10646) character set with UTF-8 encoding.

cp1047 For typewriter-like devices which use the ebcdic
encoding IBM cp1047.

lj4 For HP LaserJet4-compatible (or other PCL5-
compatible) printers.

lbp For Canon capsl printers (LBP-4 and LBP-8 series
laser printers).

html To produce html output. Note that the html
driver consists of two parts, a preprocessor (pre-
grohtml) and a postprocessor (post-grohtml).

The predefined gtroff string register .T contains the current
output device; the read-only number register .T is set to 1 if
this option is used (which is always true if groff is used to call
gtroff). See Section 5.7.5 [Built-in Registers], page 66.
The postprocessor to be used for a device is specified by the
postpro command in the device description file. (See Section 8.2
[Font Files], page 180, for more info.) This can be overridden
with the ‘-X’ option.

10 The GNU Troff Manual

‘-X’ Preview with gxditview instead of using the usual postproces-
sor. This is unlikely to produce good results except with ‘-Tps’.
Note that this is not the same as using ‘-TX75’ or ‘-TX100’ to
view a document with gxditview: The former uses the metrics
of the specified device, whereas the latter uses X-specific fonts
and metrics.

‘-N’ Don’t allow newlines with eqn delimiters. This is the same as
the ‘-N’ option in geqn.

‘-S’ Safer mode. Pass the ‘-S’ option to gpic and disable the open,
opena, pso, sy, and pi requests. For security reasons, this is
enabled by default.

‘-U’ Unsafe mode. This enables the open, opena, pso, sy, and pi
requests.

‘-a’ Generate an ascii approximation of the typeset output. The
read-only register .A is then set to 1. See Section 5.7.5 [Built-in
Registers], page 66. A typical example is

groff -a -man -Tdvi troff.man | less

which shows how lines are broken for the DVI device. Note that
this option is rather useless today since graphic output devices
are available virtually everywhere.

‘-b’ Print a backtrace with each warning or error message. This
backtrace should help track down the cause of the error. The
line numbers given in the backtrace may not always be correct:
gtroff can get confused by as or am requests while counting
line numbers.

‘-i’ Read the standard input after all the named input files have
been processed.

‘-wname’ Enable warning name. Available warnings are described in Sec-
tion 5.34 [Debugging], page 154. Multiple ‘-w’ options are al-
lowed.

‘-Wname’ Inhibit warning name. Multiple ‘-W’ options are allowed.

‘-E’ Inhibit all error messages.

‘-C’ Enable compatibility mode. See Section 5.35 [Implementation
Differences], page 159, for the list of incompatibilities between
groff and at&t troff.

‘-dcs’
‘-dname=s’

Define c or name to be a string s. c must be a one-letter name;
name can be of arbitrary length. All string assignments happen
before loading any macro file (including the start-up file).

Chapter 2: Invoking groff 11

‘-ffam’ Use fam as the default font family. See Section 5.18.2 [Font
Families], page 96.

‘-mname’ Read in the file ‘name.tmac’. Normally groff searches for this
in its macro directories. If it isn’t found, it tries ‘tmac.name’
(searching in the same directories).

‘-nnum’ Number the first page num.

‘-olist’ Output only pages in list, which is a comma-separated list of
page ranges; ‘n’ means print page n, ‘m-n’ means print every
page between m and n, ‘-n’ means print every page up to n,
‘n-’ means print every page beginning with n. gtroff exits after
printing the last page in the list. All the ranges are inclusive on
both ends.
Within gtroff, this information can be extracted with the ‘.P’
register. See Section 5.7.5 [Built-in Registers], page 66.
If your document restarts page numbering at the beginning of
each chapter, then gtroff prints the specified page range for
each chapter.

‘-rcn’
‘-rname=n’

Set number register c or name to the value n. c must be a one-
letter name; name can be of arbitrary length. n can be any
gtroff numeric expression. All register assignments happen
before loading any macro file (including the start-up file).

‘-Fdir’ Search ‘dir’ for subdirectories ‘devname’ (name is the name of
the device), for the ‘DESC’ file, and for font files before looking
in the standard directories (see Section 2.4 [Font Directories],
page 13). This option is passed to all pre- and postprocessors
using the GROFF_FONT_PATH environment variable.

‘-Mdir’ Search directory ‘dir’ for macro files before the standard direc-
tories (see Section 2.3 [Macro Directories], page 12).

‘-Idir’ This option is as described in Section 6.7 [gsoelim], page 163. It
implies the ‘-s’ option.

2.2 Environment

There are also several environment variables (of the operating system,
not within gtroff) which can modify the behavior of groff.

GROFF_COMMAND_PREFIX
If this is set to X, then groff runs Xtroff instead of gtroff.
This also applies to tbl, pic, eqn, grn, refer, and soelim. It
does not apply to grops, grodvi, grotty, pre-grohtml, post-
grohtml, grolj4, and gxditview.

12 The GNU Troff Manual

The default command prefix is determined during the installa-
tion process. If a non-GNU troff system is found, prefix ‘g’ is
used, none otherwise.

GROFF_TMAC_PATH
A colon-separated list of directories in which to search for macro
files (before the default directories are tried). See Section 2.3
[Macro Directories], page 12.

GROFF_TYPESETTER
The default output device.

GROFF_FONT_PATH
A colon-separated list of directories in which to search for the
devname directory (before the default directories are tried). See
Section 2.4 [Font Directories], page 13.

GROFF_BIN_PATH
This search path, followed by PATH, is used for commands exe-
cuted by groff.

GROFF_TMPDIR
The directory in which groff creates temporary files. If this is
not set and TMPDIR is set, temporary files are created in that
directory. Otherwise temporary files are created in a system-
dependent default directory (on Unix and GNU/Linux systems,
this is usually ‘/tmp’). grops, grefer, pre-grohtml, and post-
grohtml can create temporary files in this directory.

Note that MS-DOS and MS-Windows ports of groff use semi-colons,
rather than colons, to separate the directories in the lists described above.

2.3 Macro Directories

All macro file names must be named name.tmac or tmac.name to make
the ‘-mname’ command line option work. The mso request doesn’t have this
restriction; any file name can be used, and gtroff won’t try to append or
prepend the ‘tmac’ string.

Macro files are kept in the tmac directories, all of which constitute the
tmac path. The elements of the search path for macro files are (in that
order):
• The directories specified with gtroff’s or groff’s ‘-M’ command line

option.
• The directories given in the GROFF_TMAC_PATH environment variable.
• The current directory (only if in unsafe mode using the ‘-U’ command

line switch).
• The home directory.

Chapter 2: Invoking groff 13

• A platform-dependent directory, a site-specific (platform-independent)
directory, and the main tmac directory; the default locations are

/usr/local/lib/groff/site-tmac
/usr/local/share/groff/site-tmac
/usr/local/share/groff/1.18/tmac

assuming that the version of groff is 1.18, and the installation prefix
was ‘/usr/local’. It is possible to fine-tune those directories during
the installation process.

2.4 Font Directories

Basically, there is no restriction how font files for groff are named and
how long font names are; however, to make the font family mechanism work
(see Section 5.18.2 [Font Families], page 96), fonts within a family should
start with the family name, followed by the shape. For example, the Times
family uses ‘T’ for the family name and ‘R’, ‘B’, ‘I’, and ‘BI’ to indicate the
shapes ‘roman’, ‘bold’, ‘italic’, and ‘bold italic’, respectively. Thus the final
font names are ‘TR’, ‘TB’, ‘TI’, and ‘TBI’.

All font files are kept in the font directories which constitute the font
path. The file search functions will always append the directory devname,
where name is the name of the output device. Assuming, say, DVI output,
and ‘/foo/bar’ as a font directory, the font files for grodvi must be in
‘/foo/bar/devdvi’.

The elements of the search path for font files are (in that order):
• The directories specified with gtroff’s or groff’s ‘-F’ command line

option. All device drivers and some preprocessors also have this option.
• The directories given in the GROFF_FONT_PATH environment variable.
• A site-specific directory and the main font directory; the default loca-

tions are
/usr/local/share/groff/site-font
/usr/local/share/groff/1.18/font

assuming that the version of groff is 1.18, and the installation prefix
was ‘/usr/local’. It is possible to fine-tune those directories during
the installation process.

2.5 Invocation Examples

This section lists several common uses of groff and the corresponding
command lines.

groff file

This command processes ‘file’ without a macro package or a preprocessor.
The output device is the default, ‘ps’, and the output is sent to stdout.

14 The GNU Troff Manual

groff -t -mandoc -Tascii file | less
This is basically what a call to the man program does. gtroff processes the
manual page ‘file’ with the ‘mandoc’ macro file (which in turn either calls
the ‘man’ or the ‘mdoc’ macro package), using the tbl preprocessor and the
ascii output device. Finally, the less pager displays the result.

groff -X -m me file
Preview ‘file’ with gxditview, using the ‘me’ macro package. Since no ‘-T’
option is specified, use the default device (‘ps’). Note that you can either say
‘-m me’ or ‘-me’; the latter is an anachronism from the early days of unix.1

groff -man -rD1 -z file
Check ‘file’ with the ‘man’ macro package, forcing double-sided printing –
don’t produce any output.

2.5.1 grog

grog reads files, guesses which of the groff preprocessors and/or macro
packages are required for formatting them, and prints the groff command
including those options on the standard output. It generates one or more
of the options ‘-e’, ‘-man’, ‘-me’, ‘-mm’, ‘-mom’, ‘-ms’, ‘-mdoc’, ‘-mdoc-old’,
‘-p’, ‘-R’, ‘-g’, ‘-G’, ‘-s’, and ‘-t’.

A special file name ‘-’ refers to the standard input. Specifying no files
also means to read the standard input. Any specified options are included
in the printed command. No space is allowed between options and their
arguments. The only options recognized are ‘-C’ (which is also passed on)
to enable compatibility mode, and ‘-v’ to print the version number and exit.

For example,
grog -Tdvi paper.ms

guesses the appropriate command to print ‘paper.ms’ and then prints it to
the command line after adding the ‘-Tdvi’ option. For direct execution,
enclose the call to grog in backquotes at the unix shell prompt:

‘grog -Tdvi paper.ms‘ > paper.dvi
As seen in the example, it is still necessary to redirect the output to some-
thing meaningful (i.e. either a file or a pager program like less).

1 The same is true for the other main macro packages that come with groff: ‘man’,
‘mdoc’, ‘ms’, ‘mm’, and ‘mandoc’. This won’t work in general; for example, to load
‘trace.tmac’, either ‘-mtrace’ or ‘-m trace’ must be used.

Chapter 3: Tutorial for Macro Users 15

3 Tutorial for Macro Users

Most users tend to use a macro package to format their papers. This
means that the whole breadth of groff is not necessary for most people.
This chapter covers the material needed to efficiently use a macro package.

3.1 Basics

This section covers some of the basic concepts necessary to understand
how to use a macro package.1 References are made throughout to more
detailed information, if desired.

gtroff reads an input file prepared by the user and outputs a formatted
document suitable for publication or framing. The input consists of text,
or words to be printed, and embedded commands (requests and escapes),
which tell gtroff how to format the output. For more detail on this, see
Section 5.6 [Embedded Commands], page 56.

The word argument is used in this chapter to mean a word or number
which appears on the same line as a request, and which modifies the meaning
of that request. For example, the request

.sp

spaces one line, but
.sp 4

spaces four lines. The number 4 is an argument to the sp request which says
to space four lines instead of one. Arguments are separated from the request
and from each other by spaces (no tabs). More details on this can be found
in Section 5.6.1.1 [Request Arguments], page 57.

The primary function of gtroff is to collect words from input lines, fill
output lines with those words, justify the right-hand margin by inserting
extra spaces in the line, and output the result. For example, the input:

Now is the time
for all good men
to come to the aid
of their party.
Four score and seven
years ago, etc.

is read, packed onto output lines, and justified to produce:
Now is the time for all good men to come to the aid of their party.
Four score and seven years ago, etc.

Sometimes a new output line should be started even though the current
line is not yet full; for example, at the end of a paragraph. To do this it
is possible to cause a break, which starts a new output line. Some requests

1 This section is derived from Writing Papers with nroff using -me by Eric P. Allman.

16 The GNU Troff Manual

cause a break automatically, as normally do blank input lines and input lines
beginning with a space.

Not all input lines are text to be formatted. Some input lines are requests
which describe how to format the text. Requests always have a period (‘.’)
or an apostrophe (‘’’) as the first character of the input line.

The text formatter also does more complex things, such as automatically
numbering pages, skipping over page boundaries, putting footnotes in the
correct place, and so forth.

Here are a few hints for preparing text for input to gtroff.
• First, keep the input lines short. Short input lines are easier to edit,

and gtroff packs words onto longer lines anyhow.
• In keeping with this, it is helpful to begin a new line after every comma

or phrase, since common corrections are to add or delete sentences or
phrases.

• End each sentence with two spaces – or better, start each sentence on
a new line. gtroff recognizes characters that usually end a sentence,
and inserts sentence space accordingly.

• Do not hyphenate words at the end of lines – gtroff is smart enough
to hyphenate words as needed, but is not smart enough to take hyphens
out and join a word back together. Also, words such as “mother-in-law”
should not be broken over a line, since then a space can occur where
not wanted, such as “mother- in-law”.

gtroff double-spaces output text automatically if you use the request
‘.ls 2’. Reactivate single-spaced mode by typing ‘.ls 1’.2

A number of requests allow to change the way the output looks, some-
times called the layout of the output page. Most of these requests adjust
the placing of whitespace (blank lines or spaces).

The bp request starts a new page, causing a line break.
The request ‘.sp N ’ leaves N lines of blank space. N can be omitted

(meaning skip a single line) or can be of the form N i (for N inches) or Nc
(for N centimeters). For example, the input:

.sp 1.5i
My thoughts on the subject
.sp

leaves one and a half inches of space, followed by the line “My thoughts on
the subject”, followed by a single blank line (more measurement units are
available, see Section 5.3 [Measurements], page 51).

Text lines can be centered by using the ce request. The line after ce
is centered (horizontally) on the page. To center more than one line, use

2 If you need finer granularity of the vertical space, use the pvs request (see Section 5.19.1
[Changing Type Sizes], page 109).

Chapter 3: Tutorial for Macro Users 17

‘.ce N ’ (where N is the number of lines to center), followed by the N lines.
To center many lines without counting them, type:

.ce 1000
lines to center
.ce 0

The ‘.ce 0’ request tells groff to center zero more lines, in other words,
stop centering.

All of these requests cause a break; that is, they always start a new line.
To start a new line without performing any other action, use br.

3.2 Common Features

gtroff provides very low-level operations for formatting a document.
There are many common routine operations which are done in all documents.
These common operations are written into macros and collected into a macro
package.

All macro packages provide certain common capabilities which fall into
the following categories.

3.2.1 Paragraphs

One of the most common and most used capability is starting a para-
graph. There are a number of different types of paragraphs, any of which
can be initiated with macros supplied by the macro package. Normally, para-
graphs start with a blank line and the first line indented, like the text in this
manual. There are also block style paragraphs, which omit the indentation:

Some men look at constitutions with sanctimonious
reverence, and deem them like the ark of the covenant, too
sacred to be touched.

And there are also indented paragraphs which begin with a tag or label at
the margin and the remaining text indented.

one This is the first paragraph. Notice how the first
line of the resulting paragraph lines up with the
other lines in the paragraph.

longlabel
This paragraph had a long label. The first
character of text on the first line does not line up
with the text on second and subsequent lines,
although they line up with each other.

A variation of this is a bulleted list.

18 The GNU Troff Manual

. Bulleted lists start with a bullet. It is possible
to use other glyphs instead of the bullet. In nroff
mode using the ASCII character set for output, a dot
is used instead of a real bullet.

3.2.2 Sections and Chapters

Most macro packages supply some form of section headers. The simplest
kind is simply the heading on a line by itself in bold type. Others supply
automatically numbered section heading or different heading styles at dif-
ferent levels. Some, more sophisticated, macro packages supply macros for
starting chapters and appendices.

3.2.3 Headers and Footers

Every macro package gives some way to manipulate the headers and
footers (also called titles) on each page. This is text put at the top and
bottom of each page, respectively, which contain data like the current page
number, the current chapter title, and so on. Its appearance is not affected
by the running text. Some packages allow for different ones on the even and
odd pages (for material printed in a book form).

The titles are called three-part titles, that is, there is a left-justified part,
a centered part, and a right-justified part. An automatically generated page
number may be put in any of these fields with the ‘%’ character (see Sec-
tion 5.16 [Page Layout], page 91, for more details).

3.2.4 Page Layout

Most macro packages let the user specify top and bottom margins and
other details about the appearance of the printed pages.

3.2.5 Displays

Displays are sections of text to be set off from the body of the paper.
Major quotes, tables, and figures are types of displays, as are all the examples
used in this document.

Major quotes are quotes which are several lines long, and hence are set
in from the rest of the text without quote marks around them.

A list is an indented, single-spaced, unfilled display. Lists should be used
when the material to be printed should not be filled and justified like normal
text, such as columns of figures or the examples used in this paper.

A keep is a display of lines which are kept on a single page if possible.
An example for a keep might be a diagram. Keeps differ from lists in that
lists may be broken over a page boundary whereas keeps are not.

Chapter 3: Tutorial for Macro Users 19

Floating keeps move relative to the text. Hence, they are good for things
which are referred to by name, such as “See figure 3”. A floating keep
appears at the bottom of the current page if it fits; otherwise, it appears at
the top of the next page. Meanwhile, the surrounding text ‘flows’ around
the keep, thus leaving no blank areas.

3.2.6 Footnotes and Annotations

There are a number of requests to save text for later printing.
Footnotes are printed at the bottom of the current page.
Delayed text is very similar to a footnote except that it is printed when

called for explicitly. This allows a list of references to appear (for example)
at the end of each chapter, as is the convention in some disciplines.

Most macro packages which supply this functionality also supply a means
of automatically numbering either type of annotation.

3.2.7 Table of Contents

Tables of contents are a type of delayed text having a tag (usually the page
number) attached to each entry after a row of dots. The table accumulates
throughout the paper until printed, usually after the paper has ended. Many
macro packages provide the ability to have several tables of contents (e.g. a
standard table of contents, a list of tables, etc).

3.2.8 Indices

While some macro packages use the term index, none actually provide
that functionality. The facilities they call indices are actually more appro-
priate for tables of contents.

To produce a real index in a document, external tools like the makeindex
program are necessary.

3.2.9 Paper Formats

Some macro packages provide stock formats for various kinds of docu-
ments. Many of them provide a common format for the title and opening
pages of a technical paper. The ‘mm’ macros in particular provide formats
for letters and memoranda.

3.2.10 Multiple Columns

Some macro packages (but not ‘man’) provide the ability to have two or
more columns on a page.

20 The GNU Troff Manual

3.2.11 Font and Size Changes

The built-in font and size functions are not always intuitive, so all macro
packages provide macros to make these operations simpler.

3.2.12 Predefined Strings

Most macro packages provide various predefined strings for a variety of
uses; examples are sub- and superscripts, printable dates, quotes and various
special characters.

3.2.13 Preprocessor Support

All macro packages provide support for various preprocessors and may
extend their functionality.

For example, all macro packages mark tables (which are processed with
gtbl) by placing them between TS and TE macros. The ‘ms’ macro package
has an option, ‘.TS H’, that prints a caption at the top of a new page (when
the table is too long to fit on a single page).

3.2.14 Configuration and Customization

Some macro packages provide means of customizing many of the details
of how the package behaves. This ranges from setting the default type size
to changing the appearance of section headers.

Chapter 4: Macro Packages 21

4 Macro Packages

This chapter documents the main macro packages that come with groff.

4.1 ‘man’

This is the most popular and probably the most important macro package
of groff. It is easy to use, and a vast majority of manual pages are based
on it.

4.1.1 Options

The command line format for using the ‘man’ macros with groff is:
groff -m man [-rLL=length] [-rLT=length]

[-rcR=1] [-rC1] [-rD1] [-rPnnn]
[-rSxx] [-rXnnn] [files...]

It is possible to use ‘-man’ instead of ‘-m man’.

-rLL=length
Set line length to length. If not specified, the line length de-
faults to 78 en in nroff mode (this is 78 characters per line) and
6.5 inch otherwise.

-rLT=length
Set title length to length. If not specified, the title length de-
faults to 78 en in nroff mode (this is 78 characters per line) and
6.5 inch otherwise.

-rcR=1 This option (the default if a TTY output device is used) creates
a single, very long page instead of multiple pages. Use -rcR=0
to disable it.

-rC1 If more than one manual page is given on the command line,
number the pages continuously, rather than starting each at 1.

-rD1 Double-sided printing. Footers for even and odd pages are for-
matted differently.

-rPnnn Page numbering starts with nnn rather than with 1.

-rSxx Use xx (which can be 10, 11, or 12 pt) as the base document
font size instead of the default value of 10 pt.

-rXnnn After page nnn, number pages as nnna, nnnb, nnnc, etc. For
example, the option ‘-rX2’ produces the following page numbers:
1, 2, 2a, 2b, 2c, etc.

22 The GNU Troff Manual

4.1.2 Usage

This section describes the available macros for manual pages. For further
customization, put additional macros and requests into the file ‘man.local’
which is loaded immediately after the ‘man’ package.

Macro.TH title section [extra1 [extra2 [extra3]]]
Set the title of the man page to title and the section to section, which
must have a value between 1 and 8. The value of section may also have
a string appended, e.g. ‘.pm’, to indicate a specific subsection of the man
pages.
Both title and section are positioned at the left and right in the header
line (with section in parentheses immediately appended to title. extra1
is positioned in the middle of the footer line. extra2 is positioned at the
left in the footer line (or at the left on even pages and at the right on odd
pages if double-sided printing is active). extra3 is centered in the header
line.
For html output, headers and footers are completely suppressed.
Additionally, this macro starts a new page; the new line number is 1 again
(except if the ‘-rC1’ option is given on the command line) – this feature
is intended only for formatting multiple man pages; a single man page
should contain exactly one TH macro at the beginning of the file.

Macro.SH [heading]
Set up an unnumbered section heading sticking out to the left. Prints out
all the text following SH up to the end of the line (or the text in the next
line if there is no argument to SH) in bold face, one size larger than the
base document size. Additionally, the left margin for the following text
is reset to its default value.

Macro.SS [heading]
Set up an unnumbered (sub)section heading. Prints out all the text fol-
lowing SS up to the end of the line (or the text in the next line if there is
no argument to SS) in bold face, at the same size as the base document
size. Additionally, the left margin for the following text is reset to its
default value.

Macro.TP [nnn]
Set up an indented paragraph with label. The indentation is set to nnn
if that argument is supplied (the default unit is ‘n’ if omitted), otherwise
it is set to the default indentation value.
The first line of text following this macro is interpreted as a string to be
printed flush-left, as it is appropriate for a label. It is not interpreted
as part of a paragraph, so there is no attempt to fill the first line with
text from the following input lines. Nevertheless, if the label is not as

Chapter 4: Macro Packages 23

wide as the indentation, then the paragraph starts at the same line (but
indented), continuing on the following lines. If the label is wider than the
indentation, then the descriptive part of the paragraph begins on the line
following the label, entirely indented. Note that neither font shape nor
font size of the label is set to a default value; on the other hand, the rest
of the text has default font settings.

Macro.LP
Macro.PP
Macro.P

These macros are mutual aliases. Any of them causes a line break at the
current position, followed by a vertical space downwards by the amount
specified by the PD macro. The font size and shape are reset to the
default value (10 pt roman if no ‘-rS’ option is given on the command
line). Finally, the current left margin is restored.

Macro.IP [designator [nnn]]
Set up an indented paragraph, using designator as a tag to mark its begin-
ning. The indentation is set to nnn if that argument is supplied (default
unit is ‘n’), otherwise the default indentation value is used. Font size and
face of the paragraph (but not the designator) are reset to their default
values. To start an indented paragraph with a particular indentation but
without a designator, use ‘""’ (two double quotes) as the first argument
of IP.
For example, to start a paragraph with bullets as the designator and 4 en
indentation, write

.IP \(bu 4

Macro.HP [nnn]
Set up a paragraph with hanging left indentation. The indentation is set
to nnn if that argument is supplied (default unit is ‘n’), otherwise the
default indentation value is used. Font size and face are reset to their
default values.

Macro.RS [nnn]
Move the left margin to the right by the value nnn if specified (default
unit is ‘n’); otherwise the default indentation value is used. Calls to the
RS macro can be nested.

Macro.RE [nnn]
Move the left margin back to level nnn; if no argument is given, it moves
one level back. The first level (i.e., no call to RS yet) has number 1, and
each call to RS increases the level by 1.

24 The GNU Troff Manual

To summarize, the following macros cause a line break with the insertion
of vertical space (which amount can be changed with the PD macro): SH, SS,
TP, LP (PP, P), IP, and HP.

The macros RS and RE also cause a break but do not insert vertical space.
Finally, the macros SH, SS, LP (PP, P), and RS reset the indentation to its

default value.

4.1.3 Macros to set fonts

The standard font is roman; the default text size is 10 point. If command
line option ‘-rS=n’ is given, use npt as the default text size.

Macro.SM [text]
Set the text on the same line or the text on the next line in a font that
is one point size smaller than the default font.

Macro.SB [text]
Set the text on the same line or the text on the next line in bold face
font, one point size smaller than the default font.

Macro.BI text
Set its arguments alternately in bold face and italic. Thus,

.BI this "word and" that
would set “this” and “that” in bold face, and “word and” in italics.

Macro.IB text
Set its arguments alternately in italic and bold face.

Macro.RI text
Set its arguments alternately in roman and italic.

Macro.IR text
Set its arguments alternately in italic and roman.

Macro.BR text
Set its arguments alternately in bold face and roman.

Macro.RB text
Set its arguments alternately in roman and bold face.

Macro.B [text]
Set text in bold face. If no text is present on the line where the macro is
called, then the text of the next line appears in bold face.

Macro.I [text]
Set text in italic. If no text is present on the line where the macro is
called, then the text of the next line appears in italic.

Chapter 4: Macro Packages 25

4.1.4 Miscellaneous macros

The default indentation is 7.2 en for all output devices except for grohtml
which ignores indentation.

Macro.DT
Set tabs every 0.5 inches. Since this macro is always executed during a
call to the TH macro, it makes sense to call it only if the tab positions
have been changed.

Macro.PD [nnn]
Adjust the empty space before a new paragraph (or section). The op-
tional argument gives the amount of space (default unit is ‘v’); without
parameter, the value is reset to its default value (1 line for TTY devices,
0.4 v otherwise).

This affects the macros SH, SS, TP, LP (as well as PP and P), IP, and HP.

4.1.5 Predefined strings

The following strings are defined:

String*[S]
Switch back to the default font size.

String*[R]
The ‘registered’ sign.

String*[Tm]
The ‘trademark’ sign.

String*[lq]
String*[rq]

Left and right quote. This is equal to \(lq and \(rq, respectively.

4.1.6 Preprocessors in ‘man’ pages

If a preprocessor like gtbl or geqn is needed, it has become common
usage to make the first line of the man page look like this:

’\" word

Note the single space character after the double quote. word consists of
letters for the needed preprocessors: ‘e’ for geqn, ‘r’ for grefer, ‘t’ for
gtbl. Modern implementations of the man program read this first line and
automatically call the right preprocessor(s).

26 The GNU Troff Manual

4.2 ‘mdoc’

See the groff mdoc(7) man page (type man groff_mdoc at the command
line).

4.3 ‘ms’

The ‘-ms’ macros are suitable for reports, letters, books, user manuals,
and so forth. The package provides macros for cover pages, section headings,
paragraphs, lists, footnotes, pagination, and a table of contents.

4.3.1 Introduction to ‘ms’

The original ‘-ms’ macros were included with at&t troff as well as the
‘man’ macros. While the ‘man’ package is intended for brief documents that
can be read on-line as well as printed, the ‘ms’ macros are suitable for longer
documents that are meant to be printed rather than read on-line.

The ‘ms’ macro package included with groff is a complete, bottom-up
re-implementation. Several macros (specific to at&t or Berkeley) are not
included, while several new commands are. See Section 4.3.7 [Differences
from AT&T ms], page 47, for more information.

4.3.2 General structure of an ‘ms’ document

The ‘ms’ macro package expects a certain amount of structure, but not
as much as packages such as ‘man’ or ‘mdoc’.

The simplest documents can begin with a paragraph macro (such as LP
or PP), and consist of text separated by paragraph macros or even blank
lines. Longer documents have a structure as follows:

Document type
If you invoke the RP (report) macro on the first line of the docu-
ment, groff prints the cover page information on its own page;
otherwise it prints the information on the first page with your
document text immediately following. Other document formats
found in at&t troff are specific to at&t or Berkeley, and are
not supported in groff.

Format and layout
By setting number registers, you can change your document’s
type (font and size), margins, spacing, headers and footers, and
footnotes. See Section 4.3.3 [ms Document Control Registers],
page 27, for more details.

Chapter 4: Macro Packages 27

Cover page
A cover page consists of a title, the author’s name and institu-
tion, an abstract, and the date.1 See Section 4.3.4 [ms Cover
Page Macros], page 29, for more details.

Body Following the cover page is your document. You can use the
‘ms’ macros to write reports, letters, books, and so forth. The
package is designed for structured documents, consisting of para-
graphs interspersed with headings and augmented by lists, foot-
notes, tables, and other common constructs. See Section 4.3.5
[ms Body Text], page 31, for more details.

Table of contents
Longer documents usually include a table of contents, which you
can invoke by placing the TC macro at the end of your document.
The ‘ms’ macros have minimal indexing facilities, consisting of
the IX macro, which prints an entry on standard error. Printing
the table of contents at the end is necessary since groff is a
single-pass text formatter, thus it cannot determine the page
number of each section until that section has actually been set
and printed. Since ‘ms’ output is intended for hardcopy, you
can manually relocate the pages containing the table of contents
between the cover page and the body text after printing.

4.3.3 Document control registers

The following is a list of document control number registers. For the
sake of consistency, set registers related to margins at the beginning of your
document, or just after the RP macro. You can set other registers later in
your document, but you should keep them together at the beginning to make
them easy to find and edit as necessary.

Margin Settings

Register\n[PO]
Defines the page offset (i.e. the left margin). There is no explicit right
margin setting; the combination of the PO and LL registers implicitly
define the right margin width.
Effective: next page.
Default value: 1 i.

Register\n[LL]
Defines the line length (i.e. the width of the body text).
Effective: next paragraph.
Default: 6 i.

1 Actually, only the title is required.

28 The GNU Troff Manual

Register\n[LT]
Defines the title length (i.e. the header and footer width). This is usually
the same as LL, but not necessarily.
Effective: next paragraph.
Default: 6 i.

Register\n[HM]
Defines the header margin height at the top of the page.
Effective: next page.
Default: 1 i.

Register\n[FM]
Defines the footer margin height at the bottom of the page.
Effective: next page.
Default: 1 i.

Text Settings

Register\n[PS]
Defines the point size of the body text.
Effective: next paragraph.
Default: 10 p.

Register\n[VS]
Defines the space between lines (line height plus leading).
Effective: next paragraph.
Default: 12 p.

Paragraph Settings

Register\n[PI]
Defines the initial indent of a .PP paragraph.
Effective: next paragraph.
Default: 5 n.

Register\n[PD]
Defines the space between paragraphs.
Effective: next paragraph.
Default: 0.3 v.

Register\n[QI]
Defines the indent on both sides of a quoted (.QP) paragraph.
Effective: next paragraph.
Default: 5 n.

Chapter 4: Macro Packages 29

Footnote Settings

Register\n[FL]
Defines the length of a footnote.
Effective: next footnote.
Default: \n[LL] ∗ 5/6.

Register\n[FI]
Defines the footnote indent.
Effective: next footnote.
Default: 2 n.

Register\n[FF]
The footnote format:
0 Prints the footnote number as a superscript; indents the foot-

note (default).
1 Prints the number followed by a period (like 1.) and indents

the footnote.
2 Like 1, without an indent.
3 Like 1, but prints the footnote number as a hanging para-

graph.
Effective: next footnote.
Default: 0.

Miscellaneous Number Registers

Register\n[MINGW]
Defines the minimum width between columns in a multi-column docu-
ment.
Effective: next page.
Default: 2 n.

4.3.4 Cover page macros

Use the following macros to create a cover page for your document in the
order shown.

Macro.RP [no]
Specifies the report format for your document. The report format creates
a separate cover page. The default action (no .RP macro) is to print a
subset of the cover page on page 1 of your document.
If you use the word no as an optional argument, groff prints a title
page but does not repeat any of the title page information (title, author,
abstract, etc.) on page 1 of the document.

30 The GNU Troff Manual

Macro.DA [. . .]
(optional) Print the current date, or the arguments to the macro if any,
on the title page (if specified) and in the footers. This is the default for
nroff.

Macro.ND [. . .]
(optional) Print the current date, or the arguments to the macro if any,
on the title page (if specified) but not in the footers. This is the default
for troff.

Macro.TL
Specifies the document title. groff collects text following the .TL macro
into the title, until reaching the author name or abstract.

Macro.AU
Specifies the author’s name, which appears on the line (or lines) immedi-
ately following. You can specify multiple authors as follows:

.AU
John Doe
.AI
University of West Bumblefuzz
.AU
Martha Buck
.AI
Monolithic Corporation

...

Macro.AI
Specifies the author’s institution. You can specify multiple institutions
in the same way that you specify multiple authors.

Macro.AB [no]
Begins the abstract. The default is to print the word abstract, centered
and in italics, above the text of the abstract. The word no as an optional
argument suppresses this heading.

Macro.AE
End the abstract.

The following is example mark-up for a title page.

Chapter 4: Macro Packages 31� �
.RP
.TL
The Inevitability of Code Bloat
in Commercial and Free Software
.AU
J. Random Luser
.AI
University of West Bumblefuzz
.AB
This report examines the long-term growth
of the code bases in two large, popular software
packages; the free Emacs and the commercial
Microsoft Word.
While differences appear in the type or order
of features added, due to the different
methodologies used, the results are the same
in the end.
.PP
The free software approach is shown to be
superior in that while free software can
become as bloated as commercial offerings,
free software tends to have fewer serious
bugs and the added features are in line with
user demand.
.AE

... the rest of the paper follows ...
 	
4.3.5 Body text

This section describes macros used to mark up the body of your docu-
ment. Examples include paragraphs, sections, and other groups.

4.3.5.1 Paragraphs

The following paragraph types are available.

Macro.PP
Sets a paragraph with an initial indent.

Macro.LP
Sets a paragraph with no initial indent.

32 The GNU Troff Manual

Macro.QP
Sets a paragraph that is indented at both left and right margins. The ef-
fect is identical to the html <BLOCKQUOTE> element. The next paragraph
or heading returns margins to normal.

Macro.XP
Sets a paragraph whose lines are indented, except for the first line. This
is a Berkeley extension.

The following markup uses all four paragraph macros.� �
.NH 2
Cases used in the study
.LP
The following software and versions were
considered for this report.
.PP
For commercial software, we chose
.B "Microsoft Word for Windows" ,
starting with version 1.0 through the
current version (Word 2000).
.PP
For free software, we chose
.B Emacs ,
from its first appearance as a standalone
editor through the current version (v20).
See [Bloggs 2002] for details.
.QP
Franklin’s Law applied to software:
software expands to outgrow both
RAM and disk space over time.
.LP
Bibliography:
.XP
Bloggs, Joseph R.,
.I "Everyone’s a Critic" ,
Underground Press, March 2002.
A definitive work that answers all questions
and criticisms about the quality and usability of
free software.

 	

Chapter 4: Macro Packages 33

4.3.5.2 Headings

Use headings to create a hierarchical structure for your document. The
‘ms’ macros print headings in bold, using the same font family and point size
as the body text.

The following describes the heading macros:

Macro.NH curr-level
Macro.NH S level0 . . .

Numbered heading. The argument is either a numeric argument to in-
dicate the level of the heading, or the letter S followed by numeric argu-
ments to set the heading level explicitly.
If you specify heading levels out of sequence, such as invoking ‘.NH 3’
after ‘.NH 1’, groff prints a warning on standard error.

Macro.SH
Unnumbered subheading.

4.3.5.3 Highlighting

The ‘ms’ macros provide a variety of methods to highlight or emphasize
text:

Macro.B [txt [post [pre]]]
Sets its first argument in bold type. If you specify a second argument,
groff prints it in the previous font after the bold text, with no inter-
vening space (this allows you to set punctuation after the highlighted
text without highlighting the punctuation). Similarly, it prints the third
argument (if any) in the previous font before the first argument. For
example,

.B foo) (
prints (foo).
If you give this macro no arguments, groff prints all text following in
bold until the next highlighting, paragraph, or heading macro.

Macro.R [txt [post [pre]]]
Sets its first argument in roman (or regular) type. It operates similarly
to the B macro otherwise.

Macro.I [txt [post [pre]]]
Sets its first argument in italic type. It operates similarly to the B macro
otherwise.

Macro.CW [txt [post [pre]]]
Sets its first argument in a constant width face. It operates similarly
to the B macro otherwise.

34 The GNU Troff Manual

Macro.BI [txt [post [pre]]]
Sets its first argument in bold italic type. It operates similarly to the
B macro otherwise.

Macro.BX [txt]
Prints its argument and draws a box around it. If you want to box a
string that contains spaces, use a digit-width space (\0).

Macro.UL [txt [post]]
Prints its first argument with an underline. If you specify a second argu-
ment, groff prints it in the previous font after the underlined text, with
no intervening space.

Macro.LG
Prints all text following in larger type (two points larger than the current
point size) until the next font size, highlighting, paragraph, or heading
macro. You can specify this macro multiple times to enlarge the point
size as needed.

Macro.SM
Prints all text following in smaller type (two points smaller than the
current point size) until the next type size, highlighting, paragraph, or
heading macro. You can specify this macro multiple times to reduce the
point size as needed.

Macro.NL
Prints all text following in the normal point size (that is, the value of the
PS register).

4.3.5.4 Lists

The .IP macro handles duties for all lists.

Macro.IP [marker [width]]
The marker is usually a bullet glyph (\[bu]) for unordered lists, a number
(or auto-incrementing number register) for numbered lists, or a word or
phrase for indented (glossary-style) lists.
The width specifies the indent for the body of each list item; its default
unit is ‘n’. Once specified, the indent remains the same for all list items
in the document until specified again.

The following is an example of a bulleted list.

Chapter 4: Macro Packages 35

A bulleted list:
.IP \[bu] 2
lawyers
.IP \[bu]
guns
.IP \[bu]
money

Produces:

A bulleted list:

o lawyers

o guns

o money

The following is an example of a numbered list.

.nr step 1 1
A numbered list:
.IP \n[step] 3
lawyers
.IP \n+[step]
guns
.IP \n+[step]
money

Produces:

A numbered list:

1. lawyers

2. guns

3. money

Note the use of the auto-incrementing number register in this example.

The following is an example of a glossary-style list.

36 The GNU Troff Manual

A glossary-style list:
.IP lawyers 0.4i
Two or more attorneys.
.IP guns
Firearms, preferably
large-caliber.
.IP money
Gotta pay for those
lawyers and guns!

Produces:

A glossary-style list:

lawyers
Two or more attorneys.

guns Firearms, preferably large-caliber.

money
Gotta pay for those lawyers and guns!

In the last example, the IP macro places the definition on the same line
as the term if it has enough space; otherwise, it breaks to the next line and
starts the definition below the term. This may or may not be the effect
you want, especially if some of the definitions break and some do not. The
following examples show two possible ways to force a break.

The first workaround uses the br request to force a break after printing
the term or label.� �

A glossary-style list:
.IP lawyers 0.4i
Two or more attorneys.
.IP guns
.br
Firearms, preferably large-caliber.
.IP money
Gotta pay for those lawyers and guns!
 	

The second workaround uses the \p escape to force the break. Note the
space following the escape; this is important. If you omit the space, groff
prints the first word on the same line as the term or label (if it fits) then
breaks the line.

Chapter 4: Macro Packages 37� �
A glossary-style list:
.IP lawyers 0.4i
Two or more attorneys.
.IP guns
\p Firearms, preferably large-caliber.
.IP money
Gotta pay for those lawyers and guns!
 	

To set nested lists, use the RS and RE macros. See Section 4.3.5.5 [Indents
in ms], page 38, for more information.

For example:

� �
.IP \[bu] 2
Lawyers:
.RS
.IP \[bu]
Dewey,
.IP \[bu]
Cheatham,
.IP \[bu]
and Howe.
.RE
.IP \[bu]
Guns
 	

Produces:

o Lawyers:

o Dewey,

o Cheatham,

o and Howe.

o Guns

38 The GNU Troff Manual

4.3.5.5 Indents

In many situations, you may need to indent a section of text while still
wrapping and filling. See Section 4.3.5.4 [Lists in ms], page 34, for an exam-
ple of nested lists.

Macro.RS
Macro.RE

These macros begin and end an indented section. The PI register controls
the amount of indent, allowing the indented text to line up under hanging
and indented paragraphs.

See Section 4.3.5.7 [ms Displays and Keeps], page 38, for macros to indent
and turn off filling.

4.3.5.6 Tab Stops

Use the ta request to define tab stops as needed. See Section 5.11 [Tabs
and Fields], page 77.

Macro.TA
Use this macro to reset the tab stops to the default for ‘ms’ (every 5n).
You can redefine the TA macro to create a different set of default tab
stops.

4.3.5.7 Displays and keeps

Use displays to show text-based examples or figures (such as code list-
ings).

Displays turn off filling, so lines of code are displayed as-is without in-
serting br requests in between each line. Displays can be kept on a single
page, or allowed to break across pages.

Macro.DS L
Macro.LD
Macro.DE

Left-justified display. The ‘.DS L’ call generates a page break, if necessary,
to keep the entire display on one page. The LD macro allows the display
to break across pages. The DE macro ends the display.

Macro.DS I
Macro.ID
Macro.DE

Indents the display as defined by the DI register. The ‘.DS I’ call gen-
erates a page break, if necessary, to keep the entire display on one page.
The ID macro allows the display to break across pages. The DE macro
ends the display.

Chapter 4: Macro Packages 39

Macro.DS B
Macro.BD
Macro.DE

Sets a block-centered display: the entire display is left-justified, but in-
dented so that the longest line in the display is centered on the page. The
‘.DS B’ call generates a page break, if necessary, to keep the entire display
on one page. The BD macro allows the display to break across pages. The
DE macro ends the display.

Macro.DS C
Macro.CD
Macro.DE

Sets a centered display: each line in the display is centered. The ‘.DS C’
call generates a page break, if necessary, to keep the entire display on one
page. The CD macro allows the display to break across pages. The DE
macro ends the display.

Macro.DS R
Macro.RD
Macro.DE

Right-justifies each line in the display. The ‘.DS R’ call generates a page
break, if necessary, to keep the entire display on one page. The RD macro
allows the display to break across pages. The DE macro ends the display.

On occasion, you may want to keep other text together on a page. For
example, you may want to keep two paragraphs together, or a paragraph
that refers to a table (or list, or other item) immediately following. The ‘ms’
macros provide the KS and KE macros for this purpose.

Macro.KS
Macro.KE

The KS macro begins a block of text to be kept on a single page, and the
KE macro ends the block.

Macro.KF
Macro.KE

Specifies a floating keep; if the keep cannot fit on the current page, groff
holds the contents of the keep and allows text following the keep (in the
source file) to fill in the remainder of the current page. When the page
breaks, whether by an explicit bp request or by reaching the end of the
page, groff prints the floating keep at the top of the new page. This
is useful for printing large graphics or tables that do not need to appear
exactly where specified.

40 The GNU Troff Manual

You can also use the ne request to force a page break if there is not
enough vertical space remaining on the page.

Use the following macros to draw a box around a section of text (such as
a display).

Macro.B1
Macro.B2

Marks the beginning and ending of text that is to have a box drawn
around it. The B1 macro begins the box; the B2 macro ends it. Text in
the box is automatically placed in a diversion (keep).

4.3.5.8 Tables, figures, equations, and references

The ‘ms’ macros support the standard groff preprocessors: tbl, pic,
eqn, and refer. You mark text meant for preprocessors by enclosing it in
pairs of tags as follows.

Macro.TS [H]
Macro.TE

Denotes a table, to be processed by the tbl preprocessor. The optional
argument H to TS instructs groff to create a running header with the
information up to the TH macro. groff prints the header at the beginning
of the table; if the table runs onto another page, groff prints the header
on the next page as well.

Macro.PS
Macro.PE

Denotes a graphic, to be processed by the pic preprocessor. You can
create a pic file by hand, using the at&t pic manual available on the
Web as a reference, or by using a graphics program such as xfig.

Macro.EQ [align]
Macro.EN

Denotes an equation, to be processed by the eqn preprocessor. The op-
tional align argument can be C, L, or I to center (the default), left-justify,
or indent the equation.

Macro.[
Macro.]

Denotes a reference, to be processed by the refer preprocessor. The gnu
refer(1) man page provides a comprehensive reference to the preprocessor
and the format of the bibliographic database.

Chapter 4: Macro Packages 41

4.3.5.9 An example multi-page table

The following is an example of how to set up a table that may print across
two or more pages.� �

.TS H
allbox expand;
cb | cb .
Text ...of heading...
_
.TH
.T&
l | l .
... the rest of the table follows...
.CW
.TE
 	

4.3.5.10 Footnotes

The ‘ms’ macro package has a flexible footnote system. You can specify
either numbered footnotes or symbolic footnotes (that is, using a marker
such as a dagger symbol).

String*[*]
Specifies the location of a numbered footnote marker in the text.

Macro.FS
Macro.FE

Specifies the text of the footnote. The default action is to create a num-
bered footnote; you can create a symbolic footnote by specifying a mark
glyph (such as \[dg] for the dagger glyph) in the body text and as an
argument to the FS macro, followed by the text of the footnote and the
FE macro.

You can control how groff prints footnote numbers by changing the
value of the FF register. See Section 4.3.3 [ms Document Control Registers],
page 27.

4.3.6 Page layout

The default output from the ‘ms’ macros provides a minimalist page lay-
out: it prints a single column, with the page number centered at the top of
each page. It prints no footers.

42 The GNU Troff Manual

You can change the layout by setting the proper number registers and
strings.

4.3.6.1 Headers and footers

For documents that do not distinguish between odd and even pages, set
the following strings:

String*[LH]
String*[CH]
String*[RH]

Sets the left, center, and right headers.

String*[LF]
String*[CF]
String*[RF]

Sets the left, center, and right footers.

For documents that need different information printed in the even and
odd pages, use the following macros:

Macro.OH ’left’center’right’
Macro.EH ’left’center’right’
Macro.OF ’left’center’right’
Macro.EF ’left’center’right’

The OH and EH macros define headers for the odd and even pages; the OF
and EF macros define footers for the odd and even pages. This is more
flexible than defining the individual strings.
You can replace the quote (’) marks with any character not appearing in
the header or footer text.

4.3.6.2 Margins

You control margins using a set of number registers. See Section 4.3.3
[ms Document Control Registers], page 27, for details.

4.3.6.3 Multiple columns

The ‘ms’ macros can set text in as many columns as will reasonably fit
on the page. The following macros are available; all of them force a page
break if a multi-column mode is already set. However, if the current mode
is single-column, starting a multi-column mode does not force a page break.

Macro.1C
Single-column mode.

Chapter 4: Macro Packages 43

Macro.2C
Two-column mode.

Macro.MC [width [gutter]]
Multi-column mode. If you specify no arguments, it is equivalent to the
2C macro. Otherwise, width is the width of each column and gutter is the
space between columns. The MINGW number register controls the default
gutter width.

4.3.6.4 Creating a table of contents

The facilities in the ‘ms’ macro package for creating a table of contents
are semi-automated at best. Assuming that you want the table of contents
to consist of the document’s headings, you need to repeat those headings
wrapped in XS and XE macros.

Macro.XS [page]
Macro.XA [page]
Macro.XE

These macros define a table of contents or an individual entry in the
table of contents, depending on their use. The macros are very simple;
they cannot indent a heading based on its level. The easiest way to work
around this is to add tabs to the table of contents string. The following
is an example:� �

.NH 1
Introduction
.XS
Introduction
.XE
.LP
...
.CW
.NH 2
Methodology
.XS
Methodology
.XE
.LP
...
 	

You can manually create a table of contents by beginning with the XS
macro for the first entry, specifying the page number for that entry as the

44 The GNU Troff Manual

argument to XS. Add subsequent entries using the XA macro, specifying
the page number for that entry as the argument to XA. The following is
an example:� �

.XS 1
Introduction
.XA 2
A Brief History of the Universe
.XA 729
Details of Galactic Formation
...
.XE
 	

Macro.TC [no]
Prints the table of contents on a new page, setting the page number to i
(Roman numeral one). You should usually place this macro at the end
of the file, since groff is a single-pass formatter and can only print what
has been collected up to the point that the TC macro appears.
The optional argument no suppresses printing the title specified by the
string register TOC.

Macro.PX [no]
Prints the table of contents on a new page, using the current page num-
bering sequence. Use this macro to print a manually-generated table of
contents at the beginning of your document.
The optional argument no suppresses printing the title specified by the
string register TOC.

The Groff and Friends HOWTO includes a sed script that automatically
inserts XS and XE macro entries after each heading in a document.

Altering the NH macro to automatically build the table of contents is
perhaps initially more difficult, but would save a great deal of time in the
long run if you use ‘ms’ regularly.

4.3.6.5 Strings and Special Characters

The ‘ms’ macros provide the following predefined strings. You can change
the string definitions to help in creating documents in languages other than
English.

String*[REFERENCES]
Contains the string printed at the beginning of the references (bibliogra-
phy) page. The default is ‘References’.

Chapter 4: Macro Packages 45

String*[ABSTRACT]
Contains the string printed at the beginning of the abstract. The default
is ‘ABSTRACT’.

String*[TOC]
Contains the string printed at the beginning of the table of contents.

String*[MONTH1]
String*[MONTH2]
String*[MONTH3]
String*[MONTH4]
String*[MONTH5]
String*[MONTH6]
String*[MONTH7]
String*[MONTH8]
String*[MONTH9]
String*[MONTH10]
String*[MONTH11]
String*[MONTH12]

Prints the full name of the month in dates. The default is ‘January’,
‘February’, etc.

The following special characters are available2:

String*[-]
Prints an em dash.

String*[*Q]
String*[*U]

Prints typographer’s quotes in troff, plain quotes in nroff. *Q is the left
quote and *U is the right quote.

Improved accent marks are available in the ‘ms’ macros.

Macro.AM
Specify this macro at the beginning of your document to enable extended
accent marks and special characters. This is a Berkeley extension.
To use the accent marks, place them after the character being accented.

The following accent marks are available after invoking the AM macro:

String*[’]
Acute accent.

2 For an explanation what special characters are see Section 7.1 [Special Characters],
page 165.

46 The GNU Troff Manual

String*[‘]
Grave accent.

String*[^]
Circumflex.

String*[,]
Cedilla.

String*[~]
Tilde.

String*[:]
Umlaut.

String*[v]
Hacek.

String*[_]
Macron (overbar).

String*[.]
Underdot.

String*[o]
Ring above.

The following are standalone characters available after invoking the AM
macro:

String*[?]
Upside-down question mark.

String*[!]
Upside-down exclamation point.

String*[8]
German ß ligature.

String*[3]
Yogh.

String*[Th]
Uppercase thorn.

Chapter 4: Macro Packages 47

String*[th]
Lowercase thorn.

String*[D-]
Uppercase eth.

String*[d-]
Lowercase eth.

String*[q]
Hooked o.

String*[ae]
Lowercase æ ligature.

String*[Ae]
Uppercase Æ ligature.

4.3.7 Differences from at&t ‘ms’

This section lists the (minor) differences between the groff -ms macros
and at&t troff -ms macros.

4.3.7.1 troff macros not appearing in groff

Macros missing from groff -ms are cover page macros specific to Bell
Labs. The macros known to be missing are:

.TM Technical memorandum; a cover sheet style

.IM Internal memorandum; a cover sheet style

.MR Memo for record; a cover sheet style

.MF Memo for file; a cover sheet style

.EG Engineer’s notes; a cover sheet style

.TR Computing Science Tech Report; a cover sheet style

.OK Other keywords

.CS Cover sheet information

.MH A cover sheet macro

48 The GNU Troff Manual

4.3.7.2 groff macros not appearing in at&t troff

The groff -ms macros have a few minor extensions compared to the
at&t troff -ms macros.

Macro.AM
Improved accent marks. See Section 4.3.6.5 [ms Strings and Special Char-
acters], page 44, for details.

Macro.DS I
Indented display. The default behavior of at&t troff -ms was to indent;
the groff default prints displays flush left with the body text.

Macro.CW
Print text in constant width (Courier) font.

Macro.IX
Indexing term (printed on standard error). You can write a script to
capture and process an index generated in this manner.

The following additional number registers appear in groff -ms:

Register\n[MINGW]
Specifies a minimum space between columns (for multi-column output);
this takes the place of the GW register that was documented but apparently
not implemented in at&t troff.

Several new string registers are available as well. You can change these
to handle (for example) the local language. See Section 4.3.6.5 [ms Strings
and Special Characters], page 44, for details.

4.4 ‘me’

See the ‘meintro.me’ and ‘meref.me’ documents in groff’s ‘doc’ directory.

4.5 ‘mm’

See the groff mm(7) man page (type man groff_mm at the command line).

Chapter 5: gtroff Reference 49

5 gtroff Reference

This chapter covers all of the facilities of gtroff. Users of macro packages
may skip it if not interested in details.

5.1 Text

gtroff input files contain text with control commands interspersed
throughout. But, even without control codes, gtroff still does several things
with the input text:
• filling and adjusting
• adding additional space after sentences
• hyphenating
• inserting implicit line breaks

5.1.1 Filling and Adjusting

When gtroff reads text, it collects words from the input and fits as many
of them together on one output line as it can. This is known as filling.

Once gtroff has a filled line, it tries to adjust it. This means it widens
the spacing between words until the text reaches the right margin (in the
default adjustment mode). Extra spaces between words are preserved, but
spaces at the end of lines are ignored. Spaces at the front of a line cause a
break (breaks are explained in Section 5.1.5 [Implicit Line Breaks], page 50).

See Section 5.8 [Manipulating Filling and Adjusting], page 68.

5.1.2 Hyphenation

Since the odds are not great for finding a set of words, for every output
line, which fit nicely on a line without inserting excessive amounts of space
between words, gtroff hyphenates words so that it can justify lines without
inserting too much space between words. It uses an internal hyphenation
algorithm (a simplified version of the algorithm used within TEX) to indicate
which words can be hyphenated and how to do so. When a word is hyphen-
ated, the first part of the word is added to the current filled line being output
(with an attached hyphen), and the other portion is added to the next line
to be filled.

See Section 5.9 [Manipulating Hyphenation], page 71.

5.1.3 Sentences

Although it is often debated, some typesetting rules say there should be
different amounts of space after various punctuation marks. For example,
the Chicago typsetting manual says that a period at the end of a sentence

50 The GNU Troff Manual

should have twice as much space following it as would a comma or a period
as part of an abbreviation.

gtroff does this by flagging certain characters (normally ‘!’, ‘?’, and
‘.’) as end-of-sentence characters. When gtroff encounters one of these
characters at the end of a line, it appends a normal space followed by a
sentence space in the formatted output. (This justifies one of the conventions
mentioned in Section 5.2 [Input Conventions], page 51.)

In addition, the following characters and symbols are treated transpar-
ently while handling end-of-sentence characters: ‘"’, ‘’’, ‘)’, ‘]’, ‘*’, \[dg],
and \[rq].

See the cflags request in Section 5.18.4 [Using Symbols], page 99, for
more details.

To prevent the insertion of extra space after an end-of-sentence character
(at the end of a line), append \&.

5.1.4 Tab Stops

gtroff translates tabulator characters, also called tabs (normally code
point ascii 0x09 or ebcdic 0x05), in the input into movements to the next
tabulator stop. These tab stops are initially located every half inch across
the page. Using this, simple tables can be made easily. However, it can often
be deceptive as the appearance (and width) of the text on a terminal and
the results from gtroff can vary greatly.

Also, a possible sticking point is that lines beginning with tab charac-
ters are still filled, again producing unexpected results. For example, the
following input

1 2 3
4 5

produces
1 2 3 4 5

See Section 5.11 [Tabs and Fields], page 77.

5.1.5 Implicit Line Breaks

An important concept in gtroff is the break. When a break occurs,
gtroff outputs the partially filled line (unjustified), and resumes collecting
and filling text on the next output line.

There are several ways to cause a break in gtroff. A blank line not only
causes a break, but it also outputs a one-line vertical space (effectively a
blank line). Note that this behaviour can be modified with the blank line
macro request blm. See Section 5.25.4 [Blank Line Traps], page 136.

A line that begins with a space causes a break and the space is output
at the beginning of the next line. Note that this space isn’t adjusted, even
in fill mode.

Chapter 5: gtroff Reference 51

The end of file also causes a break – otherwise the last line of the document
may vanish!

Certain requests also cause breaks, implicitly or explicitly. This is dis-
cussed in Section 5.8 [Manipulating Filling and Adjusting], page 68.

5.2 Input Conventions

Since gtroff does filling automatically, it is traditional in groff not
to try and type things in as nicely formatted paragraphs. These are some
conventions commonly used when typing gtroff text:
• Break lines after punctuation, particularly at the end of a sentence and

in other logical places. Keep separate phrases on lines by themselves,
as entire phrases are often added or deleted when editing.

• Try to keep lines less than 40-60 characters, to allow space for inserting
more text.

• Do not try to do any formatting in a wysiwyg manner (i.e., don’t try
using spaces to get proper indentation).

5.3 Measurements

gtroff (like many other programs) requires numeric parameters to spec-
ify various measurements. Most numeric parameters1 may have a measure-
ment unit attached. These units are specified as a single character which
immediately follows the number or expression. Each of these units are under-
stood, by gtroff, to be a multiple of its basic unit. So, whenever a different
measurement unit is specified gtroff converts this into its basic units. This
basic unit, represented by a ‘u’, is a device dependent measurement which is
quite small, ranging from 1/75 th to 1/72000 th of an inch. The values may
be given as fractional numbers; however, fractional basic units are always
rounded to integers.

Some of the measurement units are completely independent of any of the
current settings (e.g. type size) of gtroff.

i Inches. An antiquated measurement unit still in use in certain
backwards countries with incredibly low-cost computer equip-
ment. One inch is equal to 2.54 cm.

c Centimeters. One centimeter is equal to 0.3937 in.

p Points. This is a typesetter’s measurement used for measure
type size. It is 72 points to an inch.

P Pica. Another typesetting measurement. 6 Picas to an inch
(and 12 points to a pica).

1 those that specify vertical or horizontal motion or a type size

52 The GNU Troff Manual

s
z See Section 5.19.2 [Fractional Type Sizes], page 111, for a dis-

cussion of these units.

f Fractions. Value is 65536. See Section 5.29 [Colors], page 144,
for usage.

The other measurements understood by gtroff depend on settings cur-
rently in effect in gtroff. These are very useful for specifying measurements
which should look proper with any size of text.

m Ems. This unit is equal to the current font size in points. So
called because it is approximately the width of the letter ‘m’ in
the current font.

n Ens. In groff, this is half of an em.

v Vertical space. This is equivalent to the current line spacing.
See Section 5.19 [Sizes], page 109, for more information about
this.

M 100ths of an em.

5.3.1 Default Units

Many requests take a default unit. While this can be helpful at times, it
can cause strange errors in some expressions. For example, the line length
request expects em units. Here are several attempts to get a line length of
3.5 inches and their results:

3.5i ⇒ 3.5i
7/2 ⇒ 0i
7/2i ⇒ 0i
(7 / 2)u ⇒ 0i
7i/2 ⇒ 0.1i
7i/2u ⇒ 3.5i

Everything is converted to basic units first. In the above example it is
assumed that 1 i equals 240 u, and 1 m equals 10 p (thus 1 m equals 33 u).
The value 7 i/2 is first handled as 7 i/2m, then converted to 1680 u/66 u
which is 25 u, and this is approximately 0.1 i. As can be seen, a scaling
indicator after a closing parenthesis is simply ignored.

Thus, the safest way to specify measurements is to always attach a scaling
indicator. If you want to multiply or divide by a certain scalar value, use ‘u’
as the unit for that value.

5.4 Expressions

gtroff has most arithmetic operators common to other languages:

Chapter 5: gtroff Reference 53

• Arithmetic: ‘+’ (addition), ‘-’ (subtraction), ‘/’ (division), ‘*’ (multipli-
cation), ‘%’ (modulo).
gtroff only provides integer arithmetic. The internal type used for
computing results is ‘int’, which is usually a 32 bit signed integer.

• Comparison: ‘<’ (less than), ‘>’ (greater than), ‘<=’ (less than or equal),
‘>=’ (greater than or equal), ‘=’ (equal), ‘==’ (the same as ‘=’).

• Logical: ‘&’ (logical and), ‘:’ (logical or).
• Unary operators: ‘-’ (negating, i.e. changing the sign), ‘+’ (just for

completeness; does nothing in expressions), ‘!’ (logical not; this works
only within if and while requests). See below for the use of unary
operators in motion requests.

• Extrema: ‘>?’ (maximum), ‘<?’ (minimum).
Example:

.nr x 5

.nr y 3

.nr z (\n[x] >? \n[y])

The register z now contains 5.
• Scaling: (c;e). Evaluate e using c as the default scaling indicator. If c

is missing, ignore scaling indicators in the evaluation of e.

Parentheses may be used as in any other language. However, in gtroff
they are necessary to ensure order of evaluation. gtroff has no operator
precedence; expressions are evaluated left to right. This means that gtroff
evaluates ‘3+5*4’ as if it were parenthesized like ‘(3+5)*4’, not as ‘3+(5*4)’,
as might be expected.

For many requests which cause a motion on the page, the unary operators
‘+’ and ‘-’ work differently if leading an expression. They then indicate a
motion relative to the current position (down or up, respectively).

Similarly, a leading ‘|’ operator indicates an absolute position. For ver-
tical movements, it specifies the distance from the top of the page; for hor-
izontal movements, it gives the distance from the beginning of the input
line.

‘+’ and ‘-’ are also treated differently by the following requests and es-
capes: bp, in, ll, lt, nm, nr, pl, pn, po, ps, pvs, rt, ti, \H, \R, and \s.
Here, leading plus and minus signs indicate increments and decrements.

See Section 5.7.1 [Setting Registers], page 61, for some examples.

Escape\B’anything’
Return 1 if anything is a valid numeric expression; or 0 if anything is
empty or not a valid numeric expression.

Due to the way arguments are parsed, spaces are not allowed in expres-
sions, unless the entire expression is surrounded by parentheses.

54 The GNU Troff Manual

See Section 5.6.1.1 [Request Arguments], page 57, and Section 5.21 [Con-
ditionals and Loops], page 117.

5.5 Identifiers

Like any other language, gtroff has rules for properly formed identifiers.
In gtroff, an identifier can be made up of almost any printable character,
with the exception of the following characters:
• Whitespace characters (spaces, tabs, and newlines).
• Backspace (ascii 0x08 or ebcdic 0x16) and character code 0x01.
• The following input characters are invalid and are ignored if groff runs

on a machine based on ascii, causing a warning message of type ‘input’
(see Section 5.34 [Debugging], page 154, for more details): 0x00, 0x0B,
0x0D-0x1F, 0x80-0x9F.
And here are the invalid input characters if groff runs on an ebcdic
host: 0x00, 0x08, 0x09, 0x0B, 0x0D-0x14, 0x17-0x1F, 0x30-0x3F.
Currently, some of these reserved codepoints are used internally, thus
making it non-trivial to extend gtroff to cover Unicode or other char-
acter sets and encodings which use characters of these ranges.
Note that invalid characters are removed before parsing; an identifier
foo, followed by an invalid character, followed by bar is treated as
foobar.

For example, any of the following is valid.
br
PP
(l
end-list
@_

Note that identifiers longer than two characters with a closing bracket (‘]’) in
its name can’t be accessed with escape sequences which expect an identifier
as a parameter. For example, ‘\[foo]]’ accesses the glyph ‘foo’, followed
by ‘]’, whereas ‘\C’foo]’’ really asks for glyph ‘foo]’.

To avoid problems with the refer preprocessor, macro names should not
start with ‘[’ or ‘]’. Due to backwards compatibility, everything after ‘.[’
and ‘.]’ is handled as a special argument to refer. For example, ‘.[foo’
makes refer to start a reference, using ‘foo’ as a parameter.

Escape\A’ident’
Test whether an identifier ident is valid in gtroff. It expands to the
character 1 or 0 according to whether its argument (usually delimited by
quotes) is or is not acceptable as the name of a string, macro, diversion,
number register, environment, or font. It returns 0 if no argument is

Chapter 5: gtroff Reference 55

given. This is useful for looking up user input in some sort of associative
table.

\A’end-list’
⇒ 1

See Section 5.6.3 [Escapes], page 58, for details on parameter delimiting
characters.

Identifiers in gtroff can be any length, but, in some contexts, gtroff
needs to be told where identifiers end and text begins (and in different ways
depending on their length):

• Single character.

• Two characters. Must be prefixed with ‘(’ in some situations.

• Arbitrary length (gtroff only). Must be bracketed with ‘[’ and ‘]’ in
some situations. Any length identifier can be put in brackets.

Unlike many other programming languages, undefined identifiers are
silently ignored or expanded to nothing. When gtroff finds an undefined
identifier, it emits a warning, doing the following:

• If the identifier is a string, macro, or diversion, gtroff defines it as
empty.

• If the identifier is a number register, gtroff defines it with a value of 0.

See Section 5.34.1 [Warnings], page 157., Section 5.7.2 [Interpolating Reg-
isters], page 63, and Section 5.20 [Strings], page 113.

Note that macros, strings, and diversions share the same name space.

.de xxx

. nop foo

..

.

.di xxx
bar
.br
.di
.
.xxx

⇒ bar

As can be seen in the previous example, gtroff reuses the identifier ‘xxx’,
changing it from a macro to a diversion. No warning is emitted! The contents
of the first macro definition is lost.

See Section 5.7.2 [Interpolating Registers], page 63, and Section 5.20
[Strings], page 113.

56 The GNU Troff Manual

5.6 Embedded Commands

Most documents need more functionality beyond filling, adjusting and
implicit line breaking. In order to gain further functionality, gtroff allows
commands to be embedded into the text, in two ways.

The first is a request which takes up an entire line, and does some large-
scale operation (e.g. break lines, start new pages).

The other is an escape which can be usually embedded anywhere in the
text; most requests can accept it even as an argument. Escapes generally do
more minor operations like sub- and superscripts, print a symbol, etc.

5.6.1 Requests

A request line begins with a control character, which is either a single
quote (‘’’, the no-break control character) or a period (‘.’, the normal control
character). These can be changed; see Section 5.12 [Character Translations],
page 82, for details. After this there may be optional tabs or spaces followed
by an identifier which is the name of the request. This may be followed by
any number of space-separated arguments (no tabs here).

Since a control character followed by whitespace only is ignored, it is com-
mon practice to use this feature for structuring the source code of documents
or macro packages.

.de foo

. tm This is foo.

..

.

.

.de bar

. tm This is bar.

..

Another possibility is to use the blank line macro request blm by assigning
an empty macro to it.

Chapter 5: gtroff Reference 57

.de do-nothing

..

.blm do-nothing \" activate blank line macro

.de foo

. tm This is foo.

..

.de bar

. tm This is bar.

..

.blm \" deactivate blank line macro

See Section 5.25.4 [Blank Line Traps], page 136.
To begin a line with a control character without it being interpreted,

precede it with \&. This represents a zero width space, which means it does
not affect the output.

In most cases the period is used as a control character. Several requests
cause a break implicitly; using the single quote control character prevents
this.

5.6.1.1 Request Arguments

Arguments to requests (and macros) are processed much like the shell:
The line is split into arguments according to spaces.2 An argument which is
intended to contain spaces can either be enclosed in double quotes, or have
the spaces escaped with backslashes.

Here are a few examples:
.uh The Mouse Problem
.uh "The Mouse Problem"
.uh The\ Mouse\ Problem

The first line is the uh macro being called with 3 arguments, ‘The’, ‘Mouse’,
and ‘Problem’. The latter two have the same effect of calling the uh macro
with one argument, ‘The Mouse Problem’.3

A double quote which isn’t preceded by a space doesn’t start a macro
argument. If not closing a string, it is printed literally.

For example,
2 Plan 9’s troff implementation also allows tabs for argument separation – gtroff

intentionally doesn’t support this.
3 The last solution, i.e., using escaped spaces, is “classical” in the sense that it can be

found in most troff documents. Nevertheless, it is not optimal in all situations, since
‘\ ’ inserts a fixed-width, non-breaking space character which can’t stretch. gtroff

provides a different command \~ to insert a stretchable, non-breaking space.

58 The GNU Troff Manual

.xxx a" "b c" "de"fg"
has the arguments ‘a"’, ‘b c’, ‘de’, and ‘fg"’. Don’t rely on this obscure
behaviour!

There are two possibilities to get a double quote reliably.
• Enclose the whole argument with double quotes and use two consecutive

double quotes to represent a single one. This traditional solution has
the disadvantage that double quotes don’t survive argument expansion
again if called in compatibility mode (using the ‘-C’ option of groff):

.de xx

. tm xx: ‘\\$1’ ‘\\$2’ ‘\\$3’

.

. yy "\\$1" "\\$2" "\\$3"

..

.de yy

. tm yy: ‘\\$1’ ‘\\$2’ ‘\\$3’

..

.xx A "test with ""quotes""" .
⇒ xx: ‘A’ ‘test with "quotes"’ ‘.’
⇒ yy: ‘A’ ‘test with ’ ‘quotes""’

If not in compatibility mode, you get the expected result
xx: ‘A’ ‘test with "quotes"’ ‘.’
yy: ‘A’ ‘test with "quotes"’ ‘.’

since gtroff preserves the input level.
• Use the double quote glyph \(dq. This works with and without com-

patibility mode enabled since gtroff doesn’t convert \(dq back to a
double quote input character.
Not that this method won’t work with unix troff in general since the
glyph ‘dq’ isn’t defined normally.

Double quotes in the ds request are handled differently. See Section 5.20
[Strings], page 113, for more details.

5.6.2 Macros

gtroff has a macro facility for defining a series of lines which can be in-
voked by name. They are called in the same manner as requests – arguments
also may be passed in the same manner.

See Section 5.22 [Writing Macros], page 121, and Section 5.6.1.1 [Request
Arguments], page 57.

5.6.3 Escapes

Escapes may occur anywhere in the input to gtroff. They usually be-
gin with a backslash and are followed by a single character which indicates

Chapter 5: gtroff Reference 59

the function to be performed. The escape character can be changed; see
Section 5.12 [Character Translations], page 82.

Escape sequences which require an identifier as a parameter accept three
possible syntax forms.
• The next single character is the identifier.
• If this single character is an opening parenthesis, take the following two

characters as the identifier. Note that there is no closing parenthesis
after the identifier.

• If this single character is an opening bracket, take all characters until a
closing bracket as the identifier.

Examples:
\fB
\n(XX
*[TeX]

Other escapes may require several arguments and/or some special format.
In such cases the argument is traditionally enclosed in single quotes (and
quotes are always used in this manual for the definitions of escape sequences).
The enclosed text is then processed according to what that escape expects.
Example:

\l’1.5i\(bu’
Note that the quote character can be replaced with any other character

which does not occur in the argument (even a newline or a space character)
in the following escapes: \o, \b, and \X. This makes e.g.

A caf
\o
e\’

in Paris
⇒ A café in Paris

possible, but it is better not to use this feature to avoid confusion.
The following escapes sequences (which are handled similarly to charac-

ters since they don’t take a parameter) are also allowed as delimiters: \%,
‘\ ’, \|, \^, \{, \}, \’, \‘, \-, _, \!, \?, \@, \), \/, \,, \&, \:, \~, \0, \a,
\c, \d, \e, \E, \p, \r, \t, and \u. Again, don’t use these if possible.

No newline characters as delimiters are allowed in the following escapes:
\A, \B, \Z, \C, and \w.

Finally, the escapes \D, \h, \H, \l, \L, \N, \R, \s, \S, \v, and \x can’t
use the following characters as delimiters:
• The digits 0-9.
• The (single-character) operators ‘+-/*%<>=&:().’.
• The space, tab, and newline characters.

60 The GNU Troff Manual

• All escape sequences except \%, \:, \{, \}, \’, \‘, \-, _, \!, \@, \/,
\c, \e, and \p.

To have a backslash (actually, the current escape character) appear in
the output several escapes are defined: \\, \e or \E. These are very similar,
and only differ with respect to being used in macros or diversions. See
Section 5.12 [Character Translations], page 82, for an exact description of
those escapes.

See Section 5.35 [Implementation Differences], page 159, Section 5.22.1
[Copy-in Mode], page 123, and Section 5.26 [Diversions], page 137, Sec-
tion 5.5 [Identifiers], page 54, for more information.

5.6.3.1 Comments

Probably one of the most4 common forms of escapes is the comment.

Escape\"
Start a comment. Everything to the end of the input line is ignored.
This may sound simple, but it can be tricky to keep the comments from
interfering with the appearance of the final output.
If the escape is to the right of some text or a request, that portion of the
line is ignored, but the space leading up to it is noticed by gtroff. This
only affects the ds and as request and its variants.
One possibly irritating idiosyncracy is that tabs must not be used to line
up comments. Tabs are not treated as whitespace between the request
and macro arguments.
A comment on a line by itself is treated as a blank line, because after
eliminating the comment, that is all that remains:

Test
\" comment
Test

produces
Test

Test

To avoid this, it is common to start the line with .\" which causes the
line to be treated as an undefined request and thus ignored completely.
Another commenting scheme seen sometimes is three consecutive single
quotes (’’’) at the beginning of a line. This works, but gtroff gives a
warning about an undefined macro (namely ’’), which is harmless, but
irritating.

4 Unfortunately, this is a lie. But hopefully future gtroff hackers will believe it :-)

Chapter 5: gtroff Reference 61

Escape\#
To avoid all this, gtroff has a new comment mechanism using the \#
escape. This escape works the same as \" except that the newline is also
ignored:

Test
\# comment
Test

produces
Test Test

as expected.

Request.ig yy
Ignore all input until gtroff encounters the macro named .yy on a line
by itself (or .. if yy is not specified). This is useful for commenting out
large blocks of text:

text text text...
.ig
This is part of a large block
of text that has been
temporarily(?) commented out.

We can restore it simply by removing
the .ig request and the ".." at the
end of the block.
..
More text text text...

produces
text text text... More text text text...

Note that the commented-out block of text does not cause a break.
The input is read in copy-mode; auto-incremented registers are affected
(see Section 5.7.3 [Auto-increment], page 64).

5.7 Registers

Numeric variables in gtroff are called registers. There are a number of
built-in registers, supplying anything from the date to details of formatting
parameters.

See Section 5.5 [Identifiers], page 54, for details on register identifiers.

5.7.1 Setting Registers

Define or set registers using the nr request or the \R escape.

62 The GNU Troff Manual

Request.nr ident value
Escape\R’ident value’

Set number register ident to value. If ident doesn’t exist, gtroff creates
it.

The argument to \R usually has to be enclosed in quotes. See Section 5.6.3
[Escapes], page 58, for details on parameter delimiting characters.

The \R escape doesn’t produce an input token in gtroff; with other
words, it vanishes completely after gtroff has processed it.

For example, the following two lines are equivalent:

.nr a (((17 + (3 * 4))) % 4)
\R’a (((17 + (3 * 4))) % 4)’

⇒ 1

Both nr and \R have two additional special forms to increment or decre-
ment a register.

Request.nr ident +value
Request.nr ident -value
Escape\R’ident +value’
Escape\R’ident -value’

Increment (decrement) register ident by value.

.nr a 1

.nr a +1
\na

⇒ 2

To assign the negated value of a register to another register, some care
must be taken to get the desired result:

.nr a 7

.nr b 3

.nr a -\nb
\na

⇒ 4
.nr a (-\nb)
\na

⇒ -3

The surrounding parentheses prevent the interpretation of the minus sign
as a decrementing operator. An alternative is to start the assignment
with a ‘0’:

Chapter 5: gtroff Reference 63

.nr a 7

.nr b -3

.nr a \nb
\na

⇒ 4
.nr a 0\nb
\na

⇒ -3

Request.rr ident
Remove number register ident. If ident doesn’t exist, the request is ig-
nored.

Request.rnn ident1 ident2
Rename number register ident1 to ident2. If either ident1 or ident2
doesn’t exist, the request is ignored.

Request.aln ident1 ident2
Create an alias ident1 for a number register ident2. The new name and
the old name are exactly equivalent. If ident1 is undefined, a warning
of type ‘reg’ is generated, and the request is ignored. See Section 5.34
[Debugging], page 154, for information about warnings.

5.7.2 Interpolating Registers

Numeric registers can be accessed via the \n escape.

Escape\ni
Escape\n(id
Escape\n[ident]

Interpolate number register with name ident (one-character name i, two-
character name id). This means that the value of the register is expanded
in-place while gtroff is parsing the input line. Nested assignments (also
called indirect assignments) are possible.

.nr a 5

.nr as \na+\na
\n(as

⇒ 10

64 The GNU Troff Manual

.nr a1 5

.nr ab 6

.ds str b

.ds num 1
\n[a\n[num]]

⇒ 5
\n[a*[str]]

⇒ 6

5.7.3 Auto-increment

Number registers can also be auto-incremented and auto-decremented.
The increment or decrement value can be specified with a third argument to
the nr request or \R escape.

Request.nr ident value incr
Set number register ident to value; the increment for auto-incrementing
is set to incr. Note that the \R escape doesn’t support this notation.

To activate auto-incrementing, the escape \n has a special syntax form.

Escape\n+i
Escape\n-i
Escape\n(+id
Escape\n(-id
Escape\n+(id
Escape\n-(id
Escape\n[+ident]
Escape\n[-ident]
Escape\n+[ident]
Escape\n-[ident]

Before interpolating, increment or decrement ident (one-character name i,
two-character name id) by the auto-increment value as specified with
the nr request (or the \R escape). If no auto-increment value has been
specified, these syntax forms are identical to \n.

For example,
.nr a 0 1
.nr xx 0 5
.nr foo 0 -2
\n+a, \n+a, \n+a, \n+a, \n+a
.br
\n-(xx, \n-(xx, \n-(xx, \n-(xx, \n-(xx
.br
\n+[foo], \n+[foo], \n+[foo], \n+[foo], \n+[foo]

produces

Chapter 5: gtroff Reference 65

1, 2, 3, 4, 5
-5, -10, -15, -20, -25
-2, -4, -6, -8, -10

To change the increment value without changing the value of a register
(a in the example), the following can be used:

.nr a \na 10

5.7.4 Assigning Formats

When a register is used in the text of an input file (as opposed to part of
an expression), it is textually replaced (or interpolated) with a representation
of that number. This output format can be changed to a variety of formats
(numbers, Roman numerals, etc.). This is done using the af request.

Request.af ident format
Change the output format of a number register. The first argument
ident is the name of the number register to be changed, and the second
argument format is the output format. The following output formats are
available:

1 Decimal arabic numbers. This is the default format: 0, 1, 2,
3,

0...0 Decimal numbers with as many digits as specified. So, ‘00’
would result in printing numbers as 01, 02, 03,

In fact, any digit instead of zero will do; gtroff only counts
how many digits are specified. As a consequence, af’s default
format ‘1’ could be specified as ‘0’ also (and exactly this is
returned by the \g escape, see below).

I Upper-case Roman numerals: 0, I, II, III, IV,

i Lower-case Roman numerals: 0, i, ii, iii, iv,

A Upper-case letters: 0, A, B, C, . . . , Z, AA, AB,

a Lower-case letters: 0, a, b, c, . . . , z, aa, ab,

Omitting the number register format causes a warning of type ‘missing’.
See Section 5.34 [Debugging], page 154, for more details. Specifying a
nonexistent format causes an error.

The following example produces ‘10, X, j, 010’:

66 The GNU Troff Manual

.nr a 10

.af a 1 \" the default format
\na,
.af a I
\na,
.af a a
\na,
.af a 001
\na

The largest number representable for the ‘i’ and ‘I’ formats is 39999 (or
−39999); unix troff uses ‘z’ and ‘w’ to represent 10000 and 5000 in
Roman numerals, and so does gtroff. Currently, the correct glyphs of
Roman numeral five thousand and Roman numeral ten thousand (Uni-
code code points U+2182 and U+2181, respectively) are not available.
If ident doesn’t exist, it is created.
Changing the output format of a read-only register causes an error. It
is necessary to first copy the register’s value to a writeable register, then
apply the af request to this other register.

Escape\gi
Escape\g(id
Escape\g[ident]

Return the current format of the specified register ident (one-character
name i, two-character name id). For example, ‘\ga’ after the previous
example would produce the string ‘000’. If the register hasn’t been defined
yet, nothing is returned.

5.7.5 Built-in Registers

The following lists some built-in registers which are not described else-
where in this manual. Any register which begins with a ‘.’ is read-only. A
complete listing of all built-in registers can be found in appendix E [Register
Index], page 205.

.F This string-valued register returns the current input file name.

.H Horizontal resolution in basic units.

.V Vertical resolution in basic units.

seconds The number of seconds after the minute, normally in the range 0
to 59, but can be up to 61 to allow for leap seconds. Initialized
at start-up of gtroff.

minutes The number of minutes after the hour, in the range 0 to 59.
Initialized at start-up of gtroff.

hours The number of hours past midnight, in the range 0 to 23. Ini-
tialized at start-up of gtroff.

Chapter 5: gtroff Reference 67

dw Day of the week (1-7).

dy Day of the month (1-31).

mo Current month (1-12).

year The current year.

yr The current year minus 1900. Unfortunately, the documentation
of unix Version 7’s troff had a year 2000 bug: It incorrectly
claimed that yr contains the last two digits of the year. That
claim has never been true of either at&t troff or GNU troff.
Old troff input that looks like this:

’\" The following line stopped working after 1999
This document was formatted in 19\n(yr.

can be corrected as follows:
This document was formatted in \n[year].

or, to be portable to older troff versions, as follows:
.nr y4 1900+\n(yr
This document was formatted in \n(y4.

.c
c. The current input line number. Register ‘.c’ is read-only,

whereas ‘c.’ (a gtroff extension) is writable also, affecting both
‘.c’ and ‘c.’.

ln The current output line number after a call to the nm request to
activate line numbering.
See Section 5.32 [Miscellaneous], page 150, for more information
about line numbering.

.x The major version number. For example, if the version number
is 1.03 then .x contains ‘1’.

.y The minor version number. For example, if the version number
is 1.03 then .y contains ‘03’.

.Y The revision number of groff.

$$ The process ID of gtroff.

.g Always 1. Macros should use this to determine whether they are
running under GNU troff.

.A If the command line option ‘-a’ is used to produce an ascii
approximation of the output, this is set to 1, zero otherwise.
See Section 2.1 [Groff Options], page 7.

.P This register is set to 1 (and to 0 otherwise) if the current page
is actually being printed, i.e., if the ‘-o’ option is being used
to only print selected pages. See Section 2.1 [Groff Options],
page 7, for more information.

68 The GNU Troff Manual

.T If gtroff is called with the ‘-T’ command line option, the num-
ber register .T is set to 1, and zero otherwise. See Section 2.1
[Groff Options], page 7.
Additionally, gtroff predefines a single read-write string regis-
ter .T which contains the current output device (for example,
‘latin1’ or ‘ps’).

5.8 Manipulating Filling and Adjusting

Various ways of causing breaks were given in Section 5.1.5 [Implicit Line
Breaks], page 50. The br request likewise causes a break. Several other
requests also cause breaks, but implicitly. These are bp, ce, cf, fi, fl, in,
nf, rj, sp, ti, and trf.

Request.br
Break the current line, i.e., the input collected so far is emitted without
adjustment.
If the no-break control character is used, gtroff suppresses the break:

a
’br
b

⇒ a b

Initially, gtroff fills and adjusts text to both margins. Filling can be
disabled via the nf request and re-enabled with the fi request.

Request.fi
Register\n[.u]

Activate fill mode (which is the default). This request implicitly enables
adjusting; it also inserts a break in the text currently being filled. The
read-only number register .u is set to 1.
The fill mode status is associated with the current environment (see Sec-
tion 5.27 [Environments], page 141).
See Section 5.15 [Line Control], page 90, for interaction with the \c es-
cape.

Request.nf
Activate no-fill mode. Input lines are output as-is, retaining line breaks
and ignoring the current line length. This command implicitly disables
adjusting; it also causes a break. The number register .u is set to 0.
The fill mode status is associated with the current environment (see Sec-
tion 5.27 [Environments], page 141).
See Section 5.15 [Line Control], page 90, for interaction with the \c es-
cape.

Chapter 5: gtroff Reference 69

Request.ad [mode]
Register\n[.j]

Set adjusting mode.
Activation and deactivation of adjusting is done implicitly with calls to
the fi or nf requests.
mode can have one of the following values:

l Adjust text to the left margin. This produces what is tradi-
tionally called ragged-right text.

r Adjust text to the right margin, producing ragged-left text.

c Center filled text. This is different to the ce request which
only centers text without filling.

b
n Justify to both margins. This is the default used by gtroff.

With no argument, gtroff adjusts lines in the same way it did before
adjusting was deactivated (with a call to na, for example).

text
.ad r
text
.ad c
text
.na
text
.ad \" back to centering
text

The current adjustment mode is available in the read-only number register
.j; it can be stored and subsequently used to set adjustment.
The adjustment mode status is associated with the current environment
(see Section 5.27 [Environments], page 141).

Request.na
Disable adjusting. This request won’t change the current adjustment
mode: A subsequent call to ad uses the previous adjustment setting.
The adjustment mode status is associated with the current environment
(see Section 5.27 [Environments], page 141).

Request.brp
Escape\p

Adjust the current line and cause a break.
In most cases this produces very ugly results since gtroff doesn’t have a
sophisticated paragraph building algorithm (as TEX have, for example);
instead, gtroff fills and adjusts a paragraph line by line:

70 The GNU Troff Manual

This is an uninteresting sentence.
This is an uninteresting sentence.\p
This is an uninteresting sentence.

is formatted as

This is an uninteresting sentence. This is an
uninteresting sentence.
This is an uninteresting sentence.

Request.ss word space size [sentence space size]
Register\n[.ss]
Register\n[.sss]

Change the minimum size of a space between filled words. It takes its
units as one twelfth of the space width parameter for the current font.
Initially both the word space size and sentence space size are 12.

If two arguments are given to the ss request, the second argument sets
the sentence space size. If the second argument is not given, sentence
space size is set to word space size. The sentence space size is used in
two circumstances: If the end of a sentence occurs at the end of a line
in fill mode, then both an inter-word space and a sentence space are
added; if two spaces follow the end of a sentence in the middle of a line,
then the second space is a sentence space. If a second argument is never
given to the ss request, the behaviour of unix troff is the same as that
exhibited by GNU troff. In GNU troff, as in unix troff, a sentence
should always be followed by either a newline or two spaces.

The read-only number registers .ss and .sss hold the values of the pa-
rameters set by the first and second arguments of the ss request.

The word space and sentence space values are associated with the current
environment (see Section 5.27 [Environments], page 141).

Contrary to at&t troff, this request is not ignored if a TTY output
device is used; the given values are then rounded down to a multiple of 12
(see Section 5.35 [Implementation Differences], page 159).

The request is ignored if there is no parameter.

Request.ce [nnn]
Register\n[.ce]

Center text. While the ‘.ad c’ request also centers text, it fills the text
as well. ce does not fill the text it affects. This request causes a break.
The number of lines still to be centered is associated with the current
environment (see Section 5.27 [Environments], page 141).

The following example demonstrates the differences. Here the input:

Chapter 5: gtroff Reference 71

.ll 4i

.ce 1000
This is a small text fragment which shows the differences
between the ‘.ce’ and the ‘.ad c’ request.
.ce 0

.ad c
This is a small text fragment which shows the differences
between the ‘.ce’ and the ‘.ad c’ request.

And here the result:
This is a small text fragment which

shows the differences
between the ‘.ce’ and the ‘.ad c’ request.

This is a small text fragment which
shows the differences between the ‘.ce’

and the ‘.ad c’ request.

With no arguments, ce centers the next line of text. nnn specifies the
number of lines to be centered. If the argument is zero or negative,
centering is disabled.
The basic length for centering text is the line length (as set with the ll
request) minus the indentation (as set with the in request). Temporary
indentation is ignored.
As can be seen in the previous example, it is a common idiom to turn on
centering for a large number of lines, and to turn off centering after text
to be centered. This is useful for any request which takes a number of
lines as an argument.
The .ce read-only number register contains the number of lines remaining
to be centered, as set by the ce request.

Request.rj [nnn]
Register\n[.rj]

Justify unfilled text to the right margin. Arguments are identical to the
ce request. The .rj read-only number register is the number of lines to
be right-justified as set by the rj request. This request causes a break.
The number of lines still to be right-justified is associated with the current
environment (see Section 5.27 [Environments], page 141).

5.9 Manipulating Hyphenation

As discussed in Section 5.1.2 [Hyphenation], page 49, gtroff hyphenates
words. There are a number of ways to influence hyphenation.

72 The GNU Troff Manual

Request.hy [mode]
Register\n[.hy]

Enable hyphenation. The request has an optional numeric argument,
mode, to restrict hyphenation if necessary:

1 The default argument if mode is omitted. Hyphenate without
restrictions. This is also the start-up value of gtroff.

2 Do not hyphenate the last word on a page or column.

4 Do not hyphenate the last two characters of a word.

8 Do not hyphenate the first two characters of a word.
Values in the previous table are additive. For example, the value 12 causes
gtroff to neither hyphenate the last two nor the first two characters of
a word.
The current hyphenation restrictions can be found in the read-only num-
ber register ‘.hy’.
The hyphenation mode is associated with the current environment (see
Section 5.27 [Environments], page 141).

Request.nh
Disable hyphenation (i.e., set the hyphenation mode to zero). Note that
the hyphenation mode of the last call to hy is not remembered.
The hyphenation mode is associated with the current environment (see
Section 5.27 [Environments], page 141).

Request.hlm [nnn]
Register\n[.hlm]
Register\n[.hlc]

Set the maximum number of consecutive hyphenated lines to nnn. If this
number is negative, there is no maximum. The default value is −1 if
nnn is omitted. This value is associated with the current environment
(see Section 5.27 [Environments], page 141). Only lines output from
a given environment count towards the maximum associated with that
environment. Hyphens resulting from \% are counted; explicit hyphens
are not.
The current setting of hlm is available in the .hlm read-only number reg-
ister. Also the number of immediately preceding consecutive hyphenated
lines are available in the read-only number register ‘.hlc’.

Request.hw word1 word2 . . .
Define how word1, word2, etc. are to be hyphenated. The words must be
given with hyphens at the hyphenation points. For example:

.hw in-sa-lub-rious
Besides the space character, any character whose hyphenation code value
is zero can be used to separate the arguments of hw (see the documentation

Chapter 5: gtroff Reference 73

for the hcode request below for more information). In addition, this
request can be used more than once.
Hyphenation exceptions specified with the hw request are associated with
the current hyphenation language; it causes an error if there is no current
hyphenation language.
This request is ignored if there is no parameter.
In old versions of troff there was a limited amount of space to store such
information; fortunately, with gtroff, this is no longer a restriction.

Escape\%
Escape\:

To tell gtroff how to hyphenate words on the fly, use the \% escape,
also known as the hyphenation character. Preceding a word with this
character prevents it from being hyphenated; putting it inside a word
indicates to gtroff that the word may be hyphenated at that point.
Note that this mechanism only affects that one occurrence of the word;
to change the hyphenation of a word for the entire document, use the hw
request.
The \: escape inserts a zero-width break point (that is, the word breaks
but without adding a hyphen).

... check the /var/log/\:httpd/\:access_log file ...
Note that \X and \Y start a word, that is, the \% escape in (say)
‘ \X’...’\%foobar’ and ‘ \Y’...’\%foobar’ no longer prevents hyphen-
ation but inserts a hyphenation point at the beginning of ‘foobar’; most
likely this isn’t what you want to do.

Request.hc [char]
Change the hyphenation character to char. This character then works
the same as the \% escape, and thus, no longer appears in the output.
Without an argument, hc resets the hyphenation character to be \% (the
default) only.
The hyphenation character is associated with the current environment
(see Section 5.27 [Environments], page 141).

Request.hpf pattern file
Request.hpfa pattern file
Request.hpfcode a b [c d . . .]

Read in a file of hyphenation patterns. This file is searched for in the
same way as ‘name.tmac’ (or ‘tmac.name’) is searched for if the ‘-mname’
option is specified.
It should have the same format as (simple) TEX patterns files. More
specifically, the following scanning rules are implemented.
• A percent sign starts a comment (up to the end of the line) even if

preceded by a backslash.

74 The GNU Troff Manual

• No support for ‘digraphs’ like \$.
• ^^xx (x is 0-9 or a-f) and ^^x (character code of x in the range

0-127) are recognized; other use of ^ causes an error.
• No macro expansion.
• hpf checks for the expression \patterns{...} (possibly with white-

space before and after the braces). Everything between the braces
is taken as hyphenation patterns. Consequently, { and } are not
allowed in patterns.

• Similarly, \hyphenation{...} gives a list of hyphenation exceptions.
• \endinput is recognized also.
• For backwards compatibility, if \patterns is missing, the whole file

is treated as a list of hyphenation patterns (only recognizing the %
character as the start of a comment).

If no hpf request is specified (either in the document or in a macro pack-
age), gtroff won’t hyphenate at all.
The hpfa request appends a file of patterns to the current list.
The hpfcode request defines mapping values for character codes in hy-
phenation patterns. hpf or hpfa then apply the mapping (after reading
the patterns) before replacing or appending them to the current list of
patterns. Its arguments are pairs of character codes – integers from 0
to 255. The request maps character code a to code b, code c to code d,
and so on. You can use character codes which would be invalid otherwise.
The set of hyphenation patterns is associated with the current language
set by the hla request. The hpf request is usually invoked by the
‘troffrc’ or ‘troffrc-end’ file; by default, ‘troffrc’ loads hyphenation
patterns for American English (in file ‘hyphen.us’).
A second call to hpf (for the same language) will replace the hyphenation
patterns with the new ones.
Invoking hpf causes an error if there is no current hyphenation language.

Request.hcode c1 code1 c2 code2 . . .
Set the hyphenation code of character c1 to code1, that of c2 to code2,
etc. A hyphenation code must be a single input character (not a special
character) other than a digit or a space. Initially each lower-case letter
(‘a’-‘z’) has its hyphenation code set to itself, and each upper-case letter
(‘A’-‘Z’) has a hyphenation code which is the lower-case version of itself.
This request is ignored if it has no parameter.

Request.hym [length]
Register\n[.hym]

Set the (right) hyphenation margin to length. If the current adjustment
mode is not ‘b’ or ‘n’, the line is not hyphenated if it is shorter than
length. Without an argument, the hyphenation margin is reset to its

Chapter 5: gtroff Reference 75

default value, which is 0. The default scaling indicator for this request is
‘m’. The hyphenation margin is associated with the current environment
(see Section 5.27 [Environments], page 141).
A negative argument resets the hyphenation margin to zero, emitting a
warning of type ‘range’.
The current hyphenation margin is available in the .hym read-only num-
ber register.

Request.hys [hyphenation space]
Register\n[.hys]

Set the hyphenation space to hyphenation space. If the current adjust-
ment mode is ‘b’ or ‘n’, don’t hyphenate the line if it can be justified
by adding no more than hyphenation space extra space to each word
space. Without argument, the hyphenation space is set to its default
value, which is 0. The default scaling indicator for this request is ‘m’.
The hyphenation space is associated with the current environment (see
Section 5.27 [Environments], page 141).
A negative argument resets the hyphenation space to zero, emitting a
warning of type ‘range’.
The current hyphenation space is available in the .hys read-only number
register.

Request.shc [glyph]
Set the soft hyphen character to glyph.5 If the argument is omitted,
the soft hyphen character is set to the default glyph \(hy (this is the
start-up value of gtroff also). The soft hyphen character is the glyph
that is inserted when a word is hyphenated at a line break. If the soft
hyphen character does not exist in the font of the character immediately
preceding a potential break point, then the line is not broken at that
point. Neither definitions (specified with the char request) nor transla-
tions (specified with the tr request) are considered when finding the soft
hyphen character.

Request.hla language
Register\n[.hla]

Set the current hyphenation language to the string language. Hyphen-
ation exceptions specified with the hw request and hyphenation patterns
specified with the hpf and hpfa requests are both associated with the
current hyphenation language. The hla request is usually invoked by the
‘troffrc’ or the ‘troffrc-end’ files; ‘troffrc’ sets the default language
to ‘us’.
The current hyphenation language is available as a string in the read-only
number register ‘.hla’.

5 Soft hyphen character is a misnomer since it is an output glyph.

76 The GNU Troff Manual

.ds curr_language \n[.hla]
*[curr_language]

⇒ us

5.10 Manipulating Spacing

Request.sp [distance]
Space downwards distance. With no argument it advances 1 line. A nega-
tive argument causes gtroff to move up the page the specified distance.
If the argument is preceded by a ‘|’ then gtroff moves that distance
from the top of the page. This request causes a line break. The default
scaling indicator is ‘v’.

Request.ls [nnn]
Register\n[.L]

Output nnn−1 blank lines after each line of text. With no argument,
gtroff uses the previous value before the last ls call.

.ls 2 \" This causes double-spaced output

.ls 3 \" This causes triple-spaced output

.ls \" Again double-spaced

The line spacing is associated with the current environment (see Sec-
tion 5.27 [Environments], page 141).
The read-only number register .L contains the current line spacing set-
ting.

See Section 5.19.1 [Changing Type Sizes], page 109, for the requests vs
and pvs as alternatives to ls.

Escape\x’spacing’
Register\n[.a]

Sometimes, extra vertical spacing is only needed occasionally, e.g. to allow
space for a tall construct (like an equation). The \x escape does this. The
escape is given a numerical argument, usually enclosed in quotes (like
‘\x’3p’’); the default scaling indicator is ‘v’. If this number is positive
extra vertical space is inserted below the current line. A negative number
adds space above. If this escape is used multiple times on the same line,
the maximum of the values is used.
See Section 5.6.3 [Escapes], page 58, for details on parameter delimiting
characters.
The .a read-only number register contains the most recent (nonnegative)
extra vertical line space.
Using \x can be necessary in combination with the \b escape, as the
following example shows.

Chapter 5: gtroff Reference 77

This is a test with the \[rs]b escape.
.br
This is a test with the \[rs]b escape.
.br
This is a test with \b’xyz’\x’-1m’\x’1m’.
.br
This is a test with the \[rs]b escape.
.br
This is a test with the \[rs]b escape.

produces
This is a test with the \b escape.
This is a test with the \b escape.

x
This is a test with y.

z
This is a test with the \b escape.
This is a test with the \b escape.

Request.ns
Request.rs
Register\n[.ns]

Enable no-space mode. In this mode, spacing (either via sp or via blank
lines) is disabled. The bp request to advance to the next page is also
disabled, except if it is accompanied by a page number (see Section 5.17
[Page Control], page 93, for more information). This mode ends when
actual text is output or the rs request is encountered which ends no-
space mode. The read-only number register .ns is set to 1 as long as
no-space mode is active.
This request is useful for macros that conditionally insert vertical space
before the text starts (for example, a paragraph macro could insert some
space except when it is the first paragraph after a section header).

5.11 Tabs and Fields

A tab character (ascii char 9, ebcdic char 5) causes a horizontal move-
ment to the next tab stop (much like it did on a typewriter).

Escape\t
This escape is a non-interpreted tab character. In copy mode (see Sec-
tion 5.22.1 [Copy-in Mode], page 123), \t is the same as a real tab char-
acter.

78 The GNU Troff Manual

Request.ta [n1 n2 . . . nn T r1 r2 . . . rn]
Register\n[.tabs]

Change tab stop positions. This request takes a series of tab specifiers as
arguments (optionally divided into two groups with the letter ‘T’) which
indicate where each tab stop is to be (overriding any previous settings).
Tab stops can be specified absolutely, i.e., as the distance from the left
margin. For example, the following sets 6 tab stops every one inch.

.ta 1i 2i 3i 4i 5i 6i

Tab stops can also be specified using a leading ‘+’ which means that the
specified tab stop is set relative to the previous tab stop. For example,
the following is equivalent to the previous example.

.ta 1i +1i +1i +1i +1i +1i

gtroff supports an extended syntax to specify repeat values after the ‘T’
mark (these values are always taken as relative) – this is the usual way to
specify tabs set at equal intervals. The following is, yet again, the same
as the previous examples. It does even more since it defines an infinite
number of tab stops separated by one inch.

.ta T 1i

Now we are ready to interpret the full syntax given at the beginning: Set
tabs at positions n1, n2, . . . , nn and then set tabs at nn+r1, nn+r2, . . . ,
nn+rn and then at nn+rn+r1, nn+rn+r2, . . . , nn+rn+rn, and so on.
Example: ‘4c +6c T 3c 5c 2c’ is equivalent to ‘4c 10c 13c 18c 20c 23c
28c 30c ...’.
The material in each tab column (i.e., the column between two tab stops)
may be justified to the right or left or centered in the column. This is
specified by appending ‘R’, ‘L’, or ‘C’ to the tab specifier. The default
justification is ‘L’. Example:

.ta 1i 2iC 3iR

Some notes:
• The default unit of the ta request is ‘m’.
• A tab stop is converted into a non-breakable horizontal movement

which can be neither stretched nor squeezed. For example,

.ds foo a\tb\tc

.ta T 5i
*[foo]

creates a single line which is a bit longer than 10 inches (a string is
used to show exactly where the tab characters are). Now consider
the following:

.ds bar a\tb b\tc

.ta T 5i
*[bar]

Chapter 5: gtroff Reference 79

gtroff first converts the tab stops of the line into unbreakable hori-
zontal movements, then splits the line after the second ‘b’ (assuming
a sufficiently short line length). Usually, this isn’t what the user
wants.

• Superfluous tabs (i.e., tab characters which do not correspond to a
tab stop) are ignored except the first one which delimits the charac-
ters belonging to the last tab stop for right-justifying or centering.
Consider the following example

.ds Z foo\tbar\tfoo

.ds ZZ foo\tbar\tfoobar

.ds ZZZ foo\tbar\tfoo\tbar

.ta 2i 4iR
*[Z]
.br
*[ZZ]
.br
*[ZZZ]
.br

which produces the following output:
foo bar foo
foo bar foobar
foo bar foobar

The first line right-justifies the second ‘foo’ relative to the tab stop.
The second line right-justifies ‘foobar’. The third line finally right-
justifies only ‘foo’ because of the additional tab character which
marks the end of the string belonging to the last defined tab stop.

• Tab stops are associated with the current environment (see Sec-
tion 5.27 [Environments], page 141).

• Calling ta without an argument removes all tab stops.
• The start-up value of gtroff is ‘T 0.5i’ in troff mode and ‘T 0.8i’ in

nroff mode (the latter is done with an explicit call to the ta request
in the file ‘tty.tmac’.

The read-only number register .tabs contains a string representation of
the current tab settings suitable for use as an argument to the ta request.

.ds tab-string \n[.tabs]
*[tab-string]

⇒ T120u

The troff version of the Plan 9 operating system uses register .S for the
same purpose.

Request.tc [fill-glyph]
Normally gtroff fills the space to the next tab stop with whitespace. This
can be changed with the tc request. With no argument gtroff reverts

80 The GNU Troff Manual

to using whitespace, which is the default. The value of this tab repetition
character is associated with the current environment (see Section 5.27
[Environments], page 141).6

Request.linetabs n
Register\n[.linetabs]

If n is missing or not zero, enable line-tabs mode, or disable it otherwise
(the default). In line-tabs mode, gtroff computes tab distances relative
to the (current) output line instead of the input line.
For example, the following code:

.ds x a\t\c

.ds y b\t\c

.ds z c

.ta 1i 3i
*x
*y
*z

in normal mode, results in the output
a b c

in line-tabs mode, the same code outputs
a b c

Line-tabs mode is associated with the current environment. The read-
only register .linetabs is set to 1 if in line-tabs mode, and 0 in normal
mode.

5.11.1 Leaders

Sometimes it may may be desirable to use the tc request to fill a partic-
ular tab stop with a given glyph (for example dots in a table of contents),
but also normal tab stops on the rest of the line. For this gtroff provides
an alternate tab mechanism, called leaders which does just that.

A leader character (character code 1) behaves similarly to a tab character:
It moves to the next tab stop. The only difference is that for this movement,
the fill glyph defaults to a period character and not to space.

Escape\a
This escape is a non-interpreted leader character. In copy mode (see
Section 5.22.1 [Copy-in Mode], page 123), \a is the same as a real leader
character.

6 Tab repetition character is a misnomer since it is an output glyph.

Chapter 5: gtroff Reference 81

Request.lc [fill-glyph]
Declare the leader repetition character.7 Without an argument, leaders
act the same as tabs (i.e., using whitespace for filling). gtroff’s start-
up value is a dot (‘.’). The value of the leader repetition character is
associated with the current environment (see Section 5.27 [Environments],
page 141).

For a table of contents, to name an example, tab stops may be defined
so that the section number is one tab stop, the title is the second with the
remaining space being filled with a line of dots, and then the page number
slightly separated from the dots.

.ds entry 1.1\tFoo\a\t12

.lc .

.ta 1i 5i +.25i
*[entry]

This produces
1.1 Foo.. 12

5.11.2 Fields

Fields are a more general way of laying out tabular data. A field is
defined as the data between a pair of delimiting characters. It contains
substrings which are separated by padding characters. The width of a field
is the distance on the input line from the position where the field starts to
the next tab stop. A padding character inserts stretchable space similar to
TEX’s \hss command (thus it can even be negative) to make the sum of
all substring lengths plus the stretchable space equal to the field width. If
more than one padding character is inserted, the available space is evenly
distributed among them.

Request.fc [delim-char [padding-char]]
Define a delimiting and a padding character for fields. If the latter is
missing, the padding character defaults to a space character. If there is
no argument at all, the field mechanism is disabled (which is the default).
Note that contrary to e.g. the tab repetition character, delimiting and
padding characters are not associated to the current environment (see
Section 5.27 [Environments], page 141).
Example:

.fc # ^

.ta T 3i
#foo^bar^smurf#
.br
#foo^^bar^smurf#

7 Leader repetition character is a misnomer since it is an output glyph.

82 The GNU Troff Manual

and here the result:
foo bar smurf
foo bar smurf

5.12 Character Translations

The control character (‘.’) and the no-break control character (‘’’) can
be changed with the cc and c2 requests, respectively.

Request.cc [c]
Set the control character to c. With no argument the default control
character ‘.’ is restored. The value of the control character is associated
with the current environment (see Section 5.27 [Environments], page 141).

Request.c2 [c]
Set the no-break control character to c. With no argument the default
control character ‘’’ is restored. The value of the no-break control char-
acter is associated with the current environment (see Section 5.27 [Envi-
ronments], page 141).

Request.eo
Disable the escape mechanism completely. After executing this request,
the backslash character ‘\’ no longer starts an escape sequence.
This request can be very helpful in writing macros since it is not necessary
then to double the escape character. Here an example:

.\" This is a simplified version of the

.\" .BR request from the man macro package

.eo

.de BR

. ds result \&

. while (\n[.$] >= 2) \{\

. as result \fB\$1\fR\$2

. shift 2

. \}

. if \n[.$] .as result \fB\$1
*[result]
. ft R
..
.ec

Request.ec [c]
Set the escape character to c. With no argument the default escape char-
acter ‘\’ is restored. It can be also used to re-enable the escape mechanism
after an eo request.

Chapter 5: gtroff Reference 83

Note that changing the escape character globally will likely break macro
packages since gtroff has no mechanism to ‘intern’ macros, i.e., to con-
vert a macro definition into an internal form which is independent of
its representation (TEX has this mechanism). If a macro is called, it is
executed literally.

Request.ecs
Request.ecr

The ecs request saves the current escape character in an internal register.
Use this request in combination with the ec request to temporarily change
the escape character.
The ecr request restores the escape character saved with ecs. Without
a previous call to ecs, this request sets the escape character to \.

Escape\\
Escape\e
Escape\E

Print the current escape character (which is the backslash character ‘\’
by default).
\\ is a ‘delayed’ backslash; more precisely, it is the default escape char-
acter followed by a backslash, which no longer has special meaning due
to the leading escape character. It is not an escape sequence in the usual
sense! In any unknown escape sequence \X the escape character is ig-
nored and X is printed. But if X is equal to the current escape character,
no warning is emitted.
As a consequence, only at top-level or in a diversion a backslash glyph
is printed; in copy-in mode, it expands to a single backslash which then
combines with the following character to an escape sequence.
The \E escape differs from \e by printing an escape character that is not
interpreted in copy mode. Use this to define strings with escapes that
work when used in copy mode (for example, as a macro argument). The
following example defines strings to begin and end a superscript:

.ds { \v’-.3m’\s’\Es[.s]*60/100’

.ds } \s0\v’.3m’

Another example to demonstrate the differences between the various es-
cape sequences, using a strange escape character, ‘-’.

.ec -

.de xxx
--A’123’
..
.xxx

⇒ -A’foo’

The result is surprising for most users, expecting ‘1’ since ‘foo’ is a valid
identifier. What has happened? As mentioned above, the leading escape

84 The GNU Troff Manual

character makes the following character ordinary. Written with the de-
fault escape character the sequence ‘--’ becomes ‘\-’ – this is the minus
sign.
If the escape character followed by itself is a valid escape sequence, only
\E yields the expected result:

.ec -

.de xxx
-EA’123’
..
.xxx

⇒ 1

Escape\.
Similar to \\, the sequence \. isn’t a real escape sequence. As before,
a warning message is suppressed if the escape character is followed by a
dot, and the dot itself is printed.

.de foo

. nop foo

.

. de bar

. nop bar
\\..
.
..
.foo
.bar

⇒ foo bar

The first backslash is consumed while the macro is read, and the second
is swallowed while exexuting macro foo.

A translation is a mapping of an input character to an output glyph.
The mapping occurs at output time, i.e., the input character gets assigned
the metric information of the mapped output character right before input
tokens are converted to nodes (see Section 5.33 [Gtroff Internals], page 152,
for more on this process).

Request.tr abcd. . .
Request.trin abcd. . .

Translate character a to glyph b, character c to glyph d, etc. If there is an
odd number of arguments, the last one is translated to an unstretchable
space (‘\ ’).
The trin request is identical to tr, but when you unformat a diversion
with asciify it ignores the translation. See Section 5.26 [Diversions],
page 137, for details about the asciify request.
Some notes:

Chapter 5: gtroff Reference 85

• Special characters (\(xx, \[xxx], \C’xxx’, \’, \‘, \-, _), glyphs
defined with the char request, and numbered glyphs (\N’xxx’) can
be translated also.

• The \e escape can be translated also.
• Characters can be mapped onto the \% and \~ escapes (but \% and

\~ can’t be mapped onto another glyph).
• The following characters can’t be translated: space (with one ex-

ception, see below), backspace, newline, leader (and \a), tab (and
\t).

• Translations are not considered for finding the soft hyphen character
set with the shc request.

• The pair ‘c\&’ (this is an arbitrary character c followed by the zero
width space character) maps this character to nothing.

.tr a\&
foo bar

⇒ foo br

It is even possible to map the space character to nothing:
.tr aa \&
foo bar

⇒ foobar

As shown in the example, the space character can’t be the first char-
acter/glyph pair as an argument of tr. Additionally, it is not pos-
sible to map the space character to any other glyph; requests like
‘.tr aa x’ undo ‘.tr aa \&’ instead.
If justification is active, lines are justified in spite of the ‘empty’ space
character (but there is no minimal distance, i.e. the space character,
between words).

• After an output glyph has been constructed (this happens at the mo-
ment immediately before the glyph is appended to an output glyph
list, either by direct output, in a macro, diversion, or string), it is no
longer affected by tr.

• Translating character to glyphs where one of them or both are un-
defined is possible also; tr does not check whether the entities in its
argument do exist.
See Section 5.33 [Gtroff Internals], page 152.

• troff no longer has a hard-coded dependency on Latin-1; all
charXXX entities have been removed from the font description
files. This has a notable consequence which shows up in warnings
like can’t find character with input code XXX if the tr request
isn’t handled properly.
Consider the following translation:

.tr éÉ

86 The GNU Troff Manual

This maps input character é onto glyph É, which is identical to
glyph char201. But this glyph intentionally doesn’t exist! Instead,
\[char201] is treated as an input character entity and is by de-
fault mapped onto \[’E], and gtroff doesn’t handle translations of
translations.
The right way to write the above translation is

.tr é\[’E]

With other words, the first argument of tr should be an input char-
acter or entity, and the second one a glyph entity.

• Without an argument, the tr request is ignored.

Request.trnt abcd. . .
trnt is the same as the tr request except that the translations do not
apply to text that is transparently throughput into a diversion with \!.
See Section 5.26 [Diversions], page 137, for more information.
For example,

.tr ab

.di x
\!.tm a
.di
.x

prints ‘b’ to the standard error stream; if trnt is used instead of tr it
prints ‘a’.

5.13 Troff and Nroff Mode

Originally, nroff and troff were two separate programs, the former for
TTY output, the latter for everything else. With GNU troff, both pro-
grams are merged into one executable, sending its output to a device driver
(grotty for TTY devices, grops for PostScript, etc.) which interprets the
intermediate output of gtroff. For unix troff it makes sense to talk about
Nroff mode and Troff mode since the differences are hardcoded. For GNU
troff, this distinction is not appropriate because gtroff simply takes the
information given in the font files for a particular device without handling
requests specially if a TTY output device is used.

Usually, a macro package can be used with all output devices. Never-
theless, it is sometimes necessary to make a distinction between TTY and
non-TTY devices: gtroff provides two built-in conditions ‘n’ and ‘t’ for
the if, ie, and while requests to decide whether gtroff shall behave like
nroff or like troff.

Request.troff
Make the ‘t’ built-in condition true (and the ‘n’ built-in condition false)
for if, ie, and while conditional requests. This is the default if gtroff

Chapter 5: gtroff Reference 87

(not groff) is started with the ‘-R’ switch to avoid loading of the start-up
files ‘troffrc’ and ‘troffrc-end’. Without ‘-R’, gtroff stays in troff
mode if the output device is not a TTY (e.g. ‘ps’).

Request.nroff
Make the ‘n’ built-in condition true (and the ‘t’ built-in condition false)
for if, ie, and while conditional requests. This is the default if gtroff
uses a TTY output device; the code for switching to nroff mode is in the
file ‘tty.tmac’ which is loaded by the start-up file troffrc.

See Section 5.21 [Conditionals and Loops], page 117, for more details on
built-in conditions.

5.14 Line Layout

The following drawing shows the dimensions which gtroff uses for plac-
ing a line of output onto the page. They are labeled with the request which
manipulates each dimension.

-->| in |<--
|<-----------ll------------>|

+----+----+----------------------+----+
| : : : |
+----+----+----------------------+----+

-->| po |<--
|<--------paper width---------------->|

These dimensions are:

po Page offset – this is the leftmost position of text on the final
output, defining the left margin.

in Indentation – this is the distance from the left margin where
text is printed.

ll Line length – this is the distance from the left margin to right
margin.

A simple demonstration:
.ll 3i
This is text without indentation.
The line length has been set to 3\~inch.
.in +.5i
.ll -.5i
Now the left and right margins are both increased.
.in
.ll
Calling .in and .ll without parameters restore
the previous values.

88 The GNU Troff Manual

Result:
This is text without indenta-
tion. The line length has
been set to 3 inch.

Now the left and
right margins are
both increased.

Calling .in and .ll without
parameters restore the previ-
ous values.

Request.po [offset]
Request.po +offset
Request.po -offset
Register\n[.o]

Set horizontal page offset to offset (or increment or decrement the cur-
rent value by offset). Note that this request does not cause a break, so
changing the page offset in the middle of text being filled may not yield
the expected result. The initial value is 1 i. For TTY output devices, it
is set to 0 in the startup file ‘troffrc’; the default scaling indicator is ‘m’
(and not ‘v’ as incorrectly documented in the original unix troff manual).
The current page offset can be found in the read-only number register
‘.o’.
If po is called without an argument, the page offset is reset to the previous
value before the last call to po.

.po 3i
\n[.o]

⇒ 720
.po -1i
\n[.o]

⇒ 480
.po
\n[.o]

⇒ 720

Request.in [indent]
Request.in +indent
Request.in -indent
Register\n[.i]

Set indentation to indent (or increment or decrement the current value
by indent). This request causes a break. Initially, there is no indentation.
If in is called without an argument, the indentation is reset to the previous
value before the last call to in. The default scaling indicator is ‘m’.

Chapter 5: gtroff Reference 89

The indentation is associated with the current environment (see Sec-
tion 5.27 [Environments], page 141).
If a negative indentation value is specified (which is not allowed), gtroff
emits a warning of type ‘range’ and sets the indentation to zero.
The effect of in is delayed until a partially collected line (if it exists) is
output. A temporary indent value is reset to zero also.
The current indentation (as set by in) can be found in the read-only
number register ‘.i’.

Request.ti offset
Request.ti +offset
Request.ti -offset
Register\n[.in]

Temporarily indent the next output line by offset. If an increment or
decrement value is specified, adjust the temporary indentation relative to
the value set by the in request.
This request causes a break; its value is associated with the current envi-
ronment (see Section 5.27 [Environments], page 141). The default scaling
indicator is ‘m’. A call of ti without an argument is ignored.
If the total indentation value is negative (which is not allowed), gtroff
emits a warning of type ‘range’ and sets the temporary indentation to
zero. ‘Total indentation’ is either offset if specified as an absolute value,
or the temporary plus normal indentation, if offset is given as a relative
value.
The effect of ti is delayed until a partially collected line (if it exists) is
output.
The read-only number register .in is the indentation that applies to the
current output line.
The difference between .i and .in is that the latter takes into account
whether a partially collected line still uses the old indentation value or a
temporary indentation value is active.

Request.ll [length]
Request.ll +length
Request.ll -length
Register\n[.l]
Register\n[.ll]

Set the line length to length (or increment or decrement the current value
by length). Initially, the line length is set to 6.5 i. The effect of ll is
delayed until a partially collected line (if it exists) is output. The default
scaling indicator is ‘m’.
If ll is called without an argument, the line length is reset to the previous
value before the last call to ll. If a negative line length is specified (which

90 The GNU Troff Manual

is not allowed), gtroff emits a warning of type ‘range’ and sets the line
length to zero.
The line length is associated with the current environment (see Sec-
tion 5.27 [Environments], page 141).
The current line length (as set by ll) can be found in the read-only
number register ‘.l’. The read-only number register .ll is the line length
that applies to the current output line.
Similar to .i and .in, the difference between .l and .ll is that the latter
takes into account whether a partially collected line still uses the old line
length value.

5.15 Line Control

It is important to understand how gtroff handles input and output lines.
Many escapes use positioning relative to the input line. For example, this
This is a \h’|1.2i’test.

This is a
\h’|1.2i’test.

produces
This is a test.

This is a test.

The main usage of this feature is to define macros which act exactly at
the place where called.

.\" A simple macro to underline a word

.de underline

. nop \\$1\l’|0\[ul]’

..

In the above example, ‘|0’ specifies a negative distance from the current
position (at the end of the just emitted argument \$1) back to the beginning
of the input line. Thus, the ‘\l’ escape draws a line from right to left.

gtroff makes a difference between input and output line continuation;
the latter is also called interrupting a line.

Escape\〈RET〉
Escape\c

Register\n[.int]
Continue a line. \〈RET〉 (this is a backslash at the end of a line immediately
followed by a newline) works on the input level, suppressing the effects
of the following newline in the input.

Chapter 5: gtroff Reference 91

This is a \
.test

⇒ This is a .test

The ‘|’ operator is also affected.
\c works on the output level. Anything after this escape on the same line
is ignored, except \R which works as usual. Anything before \c on the
same line will be appended to the current partial output line. The next
non-command line after an interrupted line counts as a new input line.
The visual results depend on whether no-fill mode is active.
• If no-fill mode is active (using the nf request), the next input text

line after \c will be handled as a continuation of the same input text
line.

.nf
This is a \c
test.

⇒ This is a test.

• If fill mode is active (using the fi request), a word interrupted with
\c will be continued with the text on the next input text line, without
an intervening space.

This is a te\c
st.

⇒ This is a test.

Note that an intervening control line which causes a break is stronger
than \c, flushing out the current partial line in the usual way.
The .int register contains a positive value if the last output line was
interrupted with \c; this is associated with the current environment (see
Section 5.27 [Environments], page 141).

5.16 Page Layout

gtroff provides some very primitive operations for controlling page lay-
out.

Request.pl [length]
Request.pl +length
Request.pl -length
Register\n[.p]

Set the page length to length (or increment or decrement the current
value by length). This is the length of the physical output page. The
default scaling indicator is ‘v’.
The current setting can be found in the read-only number register ‘.p’.

92 The GNU Troff Manual

Note that this only specifies the size of the page, not the top and bottom
margins. Those are not set by gtroff directly. See Section 5.25 [Traps],
page 133, for further information on how to do this.
Negative pl values are possible also, but not very useful: No trap is
sprung, and each line is output on a single page (thus suppressing all
vertical spacing).
If no argument or an invalid argument is given, pl sets the page length
to 11 i.

gtroff provides several operations which help in setting up top and bot-
tom titles (or headers and footers).

Request.tl ’left’center’right’
Print a title line. It consists of three parts: a left justified portion, a
centered portion, and a right justified portion. The argument separator
‘’’ can be replaced with any character not occurring in the title line. The
‘%’ character is replaced with the current page number. This character
can be changed with the pc request (see below).
Without argument, tl is ignored.
Some notes:
• A title line is not restricted to the top or bottom of a page.
• tl prints the title line immediately, ignoring a partially filled line

(which stays untouched).
• It is not an error to omit closing delimiters. For example, ‘.tl /foo’

is equivalent to ‘.tl /foo///’: It prints a title line with the left
justified word ‘foo’; the centered and right justfied parts are empty.

• tl accepts the same parameter delimiting characters as the \A escape;
see Section 5.6.3 [Escapes], page 58.

Request.lt [length]
Request.lt +length
Request.lt -length
Register\n[.lt]

The title line is printed using its own line length, which is specified (or
incremented or decremented) with the lt request. Initially, the title line
length is set to 6.5 i. If a negative line length is specified (which is not
allowed), gtroff emits a warning of type ‘range’ and sets the title line
length to zero. The default scaling indicator is ‘m’. If lt is called without
an argument, the title length is reset to the previous value before the last
call to lt.
The current setting of this is available in the .lt read-only number reg-
ister; it is associated with the current environment (see Section 5.27 [En-
vironments], page 141).

Chapter 5: gtroff Reference 93

Request.pn page
Request.pn +page
Request.pn -page
Register\n[.pn]

Change (increase or decrease) the page number of the next page. The only
argument is the page number; the request is ignored without a parameter.
The read-only number register .pn contains the number of the next page:
either the value set by a pn request, or the number of the current page
plus 1.

Register\n[%]
A read-write register holding the current page number.

Request.pc [char]
Change the page number character (used by the tl request) to a different
character. With no argument, this mechanism is disabled. Note that this
doesn’t affect the number register %.

See Section 5.25 [Traps], page 133.

5.17 Page Control

Request.bp [page]
Request.bp +page
Request.bp -page

Stop processing the current page and move to the next page. This request
causes a break. It can also take an argument to set (increase, decrease)
the page number of the next page. The only difference between bp and
pn is that pn does not cause a break or actually eject a page.

.de newpage \" define macro
’bp \" begin page
’sp .5i \" vertical space
.tl ’left top’center top’right top’ \" title
’sp .3i \" vertical space
.. \" end macro

bp has no effect if not called within the top-level diversion (see Section 5.26
[Diversions], page 137).

Request.ne [space]
It is often necessary to force a certain amount of space before a new page
occurs. This is most useful to make sure that there is not a single orphan
line left at the bottom of a page. The ne request ensures that there is
a certain distance, specified by the first argument, before the next page
is triggered (see Section 5.25 [Traps], page 133, for further information).

94 The GNU Troff Manual

The default scaling indicator for ne is ‘v’; the default value of space is 1 v
if no argument is given.

For example, to make sure that no fewer than 2 lines get orphaned, do
the following before each paragraph:

.ne 2
text text text

ne will then automatically cause a page break if there is space for one
line only.

Request.sv [space]
Request.os

sv is similar to the ne request; it reserves the specified amount of vertical
space. If the desired amount of space exists before the next trap (or the
bottom page boundary if no trap is set), the space is output immediately
(ignoring a partially filled line which stays untouched). If there is not
enough space, it is stored for later output via the os request. The default
value is 1 v if no argument is given; the default scaling indicator is ‘v’.

Both sv and os ignore no-space mode. While the sv request allows neg-
ative values for space, os will ignore them.

Register\n[nl]
This register contains the current vertical position. If the vertical position
is zero and the top of page transition hasn’t happened yet, nl is set
to negative value. gtroff itself does this at the very beginning of a
document before anything has been printed, but the main usage is to
plant a header trap on a page if this page has already started.

Consider the following:

.de xxx

. sp

. tl ’’Header’’

. sp

..

.
First page.
.bp
.wh 0 xxx
.nr nl (-1)
Second page.

Result:

Chapter 5: gtroff Reference 95

First page.

...

Header

Second page.

...

Without resetting nl to a negative value, the just planted trap would be
active beginning with the next page, not the current one.

See Section 5.26 [Diversions], page 137, for a comparison with the .h and
.d registers.

5.18 Fonts

gtroff can switch fonts at any point in the text.

The basic set of fonts is ‘R’, ‘I’, ‘B’, and ‘BI’. These are Times Roman,
Italic, Bold, and Bold Italic. For non-TTY devices, there is also at least one
symbol font which contains various special symbols (Greek, mathematics).

5.18.1 Changing Fonts

Request.ft [font]
Escape\ff
Escape\f(fn
Escape\f[font]

The ft request and the \f escape change the current font to font (one-
character name f, two-character name fn).

If font is a style name (as set with the sty request or with the styles
command in the ‘DESC’ file), use it within the current font family (as set
with the fam request, \F escape, or with the family command in the
‘DESC’ file).

With no argument or using ‘P’ as an argument, .ft switches to the pre-
vious font. Use \f[] to do this with the escape. The old syntax forms
\fP or \f[P] are also supported.

Fonts are generally specified as upper-case strings, which are usually 1 to
4 characters representing an abbreviation or acronym of the font name.
This is no limitation, just a convention.

The example below produces two identical lines.

96 The GNU Troff Manual

eggs, bacon,
.ft B
spam
.ft
and sausage.

eggs, bacon, \fBspam\fP and sausage.

Note that \f doesn’t produce an input token in gtroff. As a conse-
quence, it can be used in requests like mc (which expects a single character
as an argument) to change the font on the fly:

.mc \f[I]x\f[]

See Section 5.18.3 [Font Positions], page 98, for an alternative syntax.

Request.ftr f [g]
Translate font f to font g. Whenever a font named f is referred to in a \f
escape sequence, or in the ft, ul, bd, cs, tkf, special, fspecial, fp, or
sty requests, font g is used. If g is missing or equal to f the translation
is undone.

5.18.2 Font Families

Due to the variety of fonts available, gtroff has added the concept of
font families and font styles. The fonts are specified as the concatenation of
the font family and style. Specifying a font without the family part causes
gtroff to use that style of the current family.

Currently, fonts for the devices ‘-Tps’, ‘-Tdvi’, and ‘-Tlbp’ are set up
to this mechanism. By default, gtroff uses the Times family with the four
styles ‘R’, ‘I’, ‘B’, and ‘BI’.

This way, it is possible to use the basic four fonts and to select a different
font family on the command line (see Section 2.1 [Groff Options], page 7).

Request.fam [family]
Register\n[.fam]
Escape\Ff
Escape\F(fm
Escape\F[family]

Register\n[.fn]
Switch font family to family (one-character name f, two-character name
fm). If no argument is given, switch back to the previous font family. Use
\F[] to do this with the escape. Note that \FP doesn’t work; it selects
font family ‘P’ instead.
The value at start-up is ‘T’. The current font family is available in the
read-only number register ‘.fam’ (this is a string-valued register); it is
associated with the current environment.

Chapter 5: gtroff Reference 97

spam,
.fam H \" helvetica family
spam, \" used font is family H + style R = HR
.ft B \" family H + style B = font HB
spam,
.fam T \" times family
spam, \" used font is family T + style B = TB
.ft AR \" font AR (not a style)
baked beans,
.ft R \" family T + style R = font TR
and spam.

Note that \F doesn’t produce an input token in gtroff. As a conse-
quence, it can be used in requests like mc (which expects a single character
as an argument) to change the font family on the fly:

.mc \F[P]x\F[]
The ‘.fn’ register contains the current real font name of the current font.
This is a string-valued register. If the current font is a style, the value of
\n[.fn] is the proper concatenation of family and style name.

Request.sty n style
Associate style with font position n. A font position can be associated
either with a font or with a style. The current font is the index of a font
position and so is also either a font or a style. If it is a style, the font that
is actually used is the font which name is the concatenation of the name
of the current family and the name of the current style. For example, if
the current font is 1 and font position 1 is associated with style ‘R’ and
the current font family is ‘T’, then font ‘TR’ will be used. If the current
font is not a style, then the current family is ignored. If the requests
cs, bd, tkf, uf, or fspecial are applied to a style, they will instead be
applied to the member of the current family corresponding to that style.
n must be a non-negative integer value.
The default family can be set with the ‘-f’ option (see Section 2.1 [Groff
Options], page 7). The styles command in the ‘DESC’ file controls which
font positions (if any) are initially associated with styles rather than fonts.
For example, the default setting for PostScript fonts

styles R I B BI
is equivalent to

.sty 1 R

.sty 2 I

.sty 3 B

.sty 4 BI

fam and \F always check whether the current font position is valid; this
can give surprising results if the current font position is associated with
a style.

98 The GNU Troff Manual

In the following example, we want to access the PostScript font FooBar
from the font family Foo:

.sty \n[.fp] Bar

.fam Foo
⇒ warning: can’t find font ‘FooR’

The default font position at start-up is 1; for the PostScript device,
this is associated with style ‘R’, so gtroff tries to open FooR.
A solution to this problem is to use a dummy font like the following:

.fp 0 dummy TR \" set up dummy font at position 0

.sty \n[.fp] Bar \" register style ‘Bar’

.ft 0 \" switch to font at position 0

.fam Foo \" activate family ‘Foo’

.ft Bar \" switch to font ‘FooBar’

See Section 5.18.3 [Font Positions], page 98.

5.18.3 Font Positions

For the sake of old phototypesetters and compatibility with old versions
of troff, gtroff has the concept of font positions, on which various fonts
are mounted.

Request.fp pos font [external-name]
Register\n[.f]
Register\n[.fp]

Mount font font at position pos (which must be a non-negative integer).
This numeric position can then be referred to with font changing com-
mands. When gtroff starts it is using font position 1 (which must exist;
position 0 is unused usually at start-up).
The current font in use, as a font position, is available in the read-only
number register ‘.f’. This can be useful to remember the current font for
later recall. It is associated with the current environment (see Section 5.27
[Environments], page 141).

.nr save-font \n[.f]

.ft B

... text text text ...

.ft \n[save-font]

The number of the next free font position is available in the read-only
number register ‘.fp’. This is useful when mounting a new font, like so:

.fp \n[.fp] NEATOFONT

Fonts not listed in the ‘DESC’ file are automatically mounted on the next
available font position when they are referenced. If a font is to be mounted
explicitly with the fp request on an unused font position, it should be
mounted on the first unused font position, which can be found in the .fp

Chapter 5: gtroff Reference 99

register. Although gtroff does not enforce this strictly, it is not allowed
to mount a font at a position whose number is much greater (approx.
1000 positions) than that of any currently used position.
The fp request has an optional third argument. This argument gives the
external name of the font, which is used for finding the font description
file. The second argument gives the internal name of the font which is
used to refer to the font in gtroff after it has been mounted. If there is no
third argument then the internal name is used as the external name. This
feature makes it possible to use fonts with long names in compatibility
mode.

Both the ft request and the \f escape have alternative syntax forms to
access font positions.

Request.ft nnn
Escape\fn
Escape\f(nn
Escape\f[nnn]

Change the current font position to nnn (one-digit position n, two-digit
position nn), which must be a non-negative integer.
If nnn is associated with a style (as set with the sty request or with the
styles command in the ‘DESC’ file), use it within the current font family
(as set with the fam request, the \F escape, or with the family command
in the ‘DESC’ file).

this is font 1
.ft 2
this is font 2
.ft \" switch back to font 1
.ft 3
this is font 3
.ft
this is font 1 again

See Section 5.18.1 [Changing Fonts], page 95, for the standard syntax
form.

5.18.4 Using Symbols

A glyph is a graphical representation of a character. While a character
is an abstract entity containing semantic information, a glyph is something
which can be actually seen on screen or paper. It is possible that a character
has multiple glyph representation forms (for example, the character ‘A’ can
be either written in a roman or an italic font, yielding two different glyphs);
sometimes more than one character maps to a single glyph (this is a ligature
– the most common is ‘fi’).

100 The GNU Troff Manual

A symbol is simply a named glyph. Within gtroff, all glyph names of
a particular font are defined in its font file. If the user requests a glyph
not available in this font, gtroff looks up an ordered list of special fonts.
By default, the PostScript output device supports the two special fonts
‘SS’ (slanted symbols) and ‘S’ (symbols) (the former is looked up before the
latter). Other output devices use different names for special fonts. Fonts
mounted with the fonts keyword in the ‘DESC’ file are globally available.
To install additional special fonts locally (i.e. for a particular font), use the
fspecial request.

In summary, gtroff tries the following to find a given symbol:
• If the symbol has been defined with the char request, use it. This hides

a symbol with the same name in the current font.
• Check the current font.
• If the symbol has been defined with the fchar request, use it.
• Check all fonts given with the fspecial request, in the order of appear-

ance in fspecial calls.
• Check all fonts given with the special request, in the order of appear-

ance in special calls (inclusively the special fonts defined in the ‘DESC’
file, which come first).

• As a last resort, consult all fonts loaded up to now (in the order they
have been called the first time) for special fonts and check them.

See Section 8.2 [Font Files], page 180, and Section 5.18.5 [Special Fonts],
page 103, for more details.

Escape\(nm
Escape\[name]

Insert a symbol name (two-character name nm). There is no special
syntax for one-character names – the natural form ‘\n’ would collide
with escapes.8

If name is undefined, a warning of type ‘char’ is generated, and the escape
is ignored. See Section 5.34 [Debugging], page 154, for information about
warnings.
The list of available symbols is device dependent; see the groff char(7)
man page for a complete list for the given output device. For example,
say

man -Tdvi groff_char > groff_char.dvi

8 Note that a one-character symbol is not the same as an input character, i.e., the
character a is not the same as \[a]. By default, groff defines only a single one-
character symbol, \[-]; it is usually accessed as \-. On the other hand, gtroff has
the special feature that \[charXXX] is the same as the input character with character
code XXX. For example, \[char97] is identical to the letter a if ascii encoding is
active.

Chapter 5: gtroff Reference 101

for a list using the default DVI fonts (not all versions of the man program
support the ‘-T’ option). If you want to use an additional macro package
to change the used fonts, groff must be called directly:

groff -Tdvi -mec -man groff_char.7 > groff_char.dvi

Escape\C’xxx’
Typeset the glyph named xxx.9 Normally it is more convenient to use
\[xxx], but \C has the advantage that it is compatible with newer ver-
sions of at&t troff and is available in compatibility mode.

Escape\N’n’
Typeset the glyph with code n in the current font (n is not the input
character code). The number n can be any non-negative decimal integer.
Most devices only have glyphs with codes between 0 and 255; the Unicode
output device uses codes in the range 0–65535. If the current font does
not contain a glyph with that code, special fonts are not searched. The \N
escape sequence can be conveniently used in conjunction with the char
request:

.char \[phone] \f[ZD]\N’37’
The code of each glyph is given in the fourth column in the font descrip-
tion file after the charset command. It is possible to include unnamed
glyphs in the font description file by using a name of ‘---’; the \N escape
sequence is the only way to use these.

Some escape sequences directly map onto special glyphs.

Escape\’
This is a backslash followed by the apostrophe character, ascii character
0x27 (ebcdic character 0x7D). The same as \[aa], the acute accent.

Escape\‘
This is a backslash followed by ascii character 0x60 (ebcdic character
0x79 usually). The same as \[ga], the grave accent.

Escape\-
This is the same as \[-], the minus sign in the current font.

Request.cflags n c1 c2 . . .
Input characters and symbols have certain properties associated with it.10
These properties can be modified with the cflags request. The first

9 \C is actually a misnomer since it accesses an output glyph.
10 Note that the output glyphs themselves don’t have such properties. For gtroff, a

glyph is a numbered box with a given width, depth, and height, nothing else. All
manipulations with the cflags request work on the input level.

102 The GNU Troff Manual

argument is the sum of the desired flags and the remaining arguments
are the characters or symbols to have those properties. It is possible to
omit the spaces between the characters or symbols.

1 The character ends sentences (initially characters ‘.?!’ have
this property).

2 Lines can be broken before the character (initially no char-
acters have this property).

4 Lines can be broken after the character (initially the character
‘-’ and the symbols ‘\(hy’ and ‘\(em’ have this property).

8 The character overlaps horizontally (initially the symbols
‘\(ul\(rn\(ru’ have this property).

16 The character overlaps vertically (initially symbol ‘\(br’ has
this property).

32 An end-of-sentence character followed by any number of char-
acters with this property is treated as the end of a sentence
if followed by a newline or two spaces; in other words the
character is transparent for the purposes of end-of-sentence
recognition – this is the same as having a zero space factor in
TEX (initially characters ‘"’)]*’ and the symbols ‘\(dg\(rq’
have this property).

Request.char g [string]
Request.fchar g [string]

Define a new glyph g to be string (which can be empty).11 Every time
glyph g needs to be printed, string is processed in a temporary environ-
ment and the result is wrapped up into a single object. Compatibility
mode is turned off and the escape character is set to ‘\’ while string is
being processed. Any emboldening, constant spacing or track kerning is
applied to this object rather than to individual characters in string.
A glyph defined by this request can be used just like a normal glyph
provided by the output device. In particular, other characters can be
translated to it with the tr or trin requests; it can be made the leader
character by the lc request; repeated patterns can be drawn with the
glyph using the \l and \L escape sequences; words containing the glyph
can be hyphenated correctly if the hcode request is used to give the
glyph’s symbol a hyphenation code.
There is a special anti-recursion feature: Use of g within the glyph’s
definition is handled like normal characters and symbols not defined with
char.
Note that the tr and trin requests take precedence if char accesses the
same symbol.

11 char is a misnomer since an output glyph is defined.

Chapter 5: gtroff Reference 103

.tr XY
X

⇒ Y
.char X Z
X

⇒ Y
.tr XX
X

⇒ Z

The fchar request defines a fallback glyph: gtroff only checks for glyphs
defined with fchar if it cannot find the glyph in the current font. gtroff
carries out this test before checking special fonts.

Request.rchar c1 c2 . . .
Remove the definitions of glyphs c1, c2, This undoes the effect of a
char or fchar request.
It is possible to omit the whitespace between arguments.

See Section 7.1 [Special Characters], page 165.

5.18.5 Special Fonts

Special fonts are those that gtroff searches when it cannot find the
requested glyph in the current font. The Symbol font is usually a special
font.

gtroff provides the following two requests to add more special fonts.
See Section 5.18.4 [Using Symbols], page 99, for a detailed description of the
glyph searching mechanism in gtroff.

Usually, only non-TTY devices have special fonts.

Request.special s1 s2 . . .
Request.fspecial f s1 s2 . . .

Use the special request to define special fonts. They are appended to
the list of global special fonts in the given order. The first entries in this
list are the fonts defined with the fonts command in the ‘DESC’ file which
are marked as special in the corresponding font description files.
Use the fspecial request to designate special fonts only when font f font
is active. They are appended to the list of special fonts for f in the given
order. Initially, this list is empty.

5.18.6 Artificial Fonts

There are a number of requests and escapes for artificially creating fonts.
These are largely vestiges of the days when output devices did not have a
wide variety of fonts, and when nroff and troff were separate programs.

104 The GNU Troff Manual

Most of them are no longer necessary in GNU troff. Nevertheless, they are
supported.

Escape\H’height’
Escape\H’+height’
Escape\H’-height’

Change (increment, decrement) the height of the current font, but not
the width. If height is zero, restore the original height. Default scaling
indicator is ‘z’.
Currently, only the ‘-Tps’ device supports this feature.
Note that \H doesn’t produce an input token in gtroff. As a conse-
quence, it can be used in requests like mc (which expects a single character
as an argument) to change the font on the fly:

.mc \H’+5z’x\H’0’
In compatibility mode, gtroff behaves differently: If an increment or
decrement is used, it is always taken relative to the current point size and
not relative to the previously selected font height. Thus,

.cp 1
\H’+5’test \H’+5’test

prints the word ‘test’ twice with the same font height (five points larger
than the current font size).

Escape\S’slant’
Slant the current font by slant degrees. Positive values slant to the right.
Currently, only the ‘-Tps’ device supports this feature.
Note that \S doesn’t produce an input token in gtroff. As a conse-
quence, it can be used in requests like mc (which expects a single character
as an argument) to change the font on the fly:

.mc \S’20’x\S’0’
This request is incorrectly documented in the original unix troff manual;
the slant is always set to an absolute value.

Request.ul [lines]
The ul request normally underlines subsequent lines if a TTY output
device is used. Otherwise, the lines are printed in italics (only the term
‘underlined’ is used in the following). The single argument is the num-
ber of input lines to be underlined; with no argument, the next line is
underlined. If lines is zero or negative, stop the effects of ul (if it was
active). Requests and empty lines do not count for computing the num-
ber of underlined input lines, even if they produce some output like tl.
Lines inserted by macros (e.g. invoked by a trap) do count.
At the beginning of ul, the current font is stored and the underline font
is activated. Within the span of a ul request, it is possible to change
fonts, but after the last line affected by ul the saved font is restored.

Chapter 5: gtroff Reference 105

This number of lines still to be underlined is associated with the current
environment (see Section 5.27 [Environments], page 141). The underline
font can be changed with the uf request.
The ul request does not underline spaces.

Request.cu [lines]
The cu request is similar to ul but underlines spaces as well (if a TTY
output device is used).

Request.uf font
Set the underline font (globally) used by ul and cu. By default, this is
the font at position 2. font can be either a non-negative font position or
the name of a font.

Request.bd font [offset]
Request.bd font1 font2 [offset]
Register\n[.b]

Artificially create a bold font by printing each glyph twice, slightly offset.
Two syntax forms are available.
• Imitate a bold font unconditionally. The first argument specifies the

font to embolden, and the second is the number of basic units, minus
one, by which the two glyphs are offset. If the second argument is
missing, emboldening is turned off.
font can be either a non-negative font position or the name of a font.
offset is available in the .b read-only register if a special font is active;
in the bd request, its default unit is ‘u’.

• Imitate a bold form conditionally. Embolden font1 by offset only if
font font2 is the current font. This command can be issued repeat-
edly to set up different emboldening values for different current fonts.
If the second argument is missing, emboldening is turned off for this
particular current font.
This affects special fonts only (either set up with the special com-
mand in font files or with the fspecial request).

Request.cs font [width [em-size]]
Switch to and from constant glyph space mode. If activated, the width of
every glyph is width/36 ems. The em size is given absolutely by em-size;
if this argument is missing, the em value is taken from the current font size
(as set with the ps request) when the font is effectively in use. Without
second and third argument, constant glyph space mode is deactivated.
Default scaling indicator for em-size is ‘z’; width is an integer.

106 The GNU Troff Manual

5.18.7 Ligatures and Kerning

Ligatures are groups of characters that are run together, i.e, producing a
single glyph. For example, the letters ‘f’ and ‘i’ can form a ligature ‘fi’ as in
the word ‘file’. This produces a cleaner look (albeit subtle) to the printed
output. Usually, ligatures are not available in fonts for TTY output devices.

Most PostScript fonts support the fi and fl ligatures. The C/A/T
typesetter that was the target of at&t troff also supported ‘ff’, ‘ffi’, and
‘ffl’ ligatures. Advanced typesetters or ‘expert’ fonts may include ligatures
for ‘ft’ and ‘ct’, although GNU troff does not support these (yet).

Request.lg [flag]
Register\n[.lg]

Switch the ligature mechanism on or off; if the parameter is non-zero or
missing, ligatures are enabled, otherwise disabled. Default is on. The
current ligature mode can be found in the read-only number register .lg
(set to 1 or 2 if ligatures are enabled, 0 otherwise).
Setting the ligature mode to 2 enables the two-character ligatures (fi, fl,
and ff) and disables the three-character ligatures (ffi and ffl).

Pairwise kerning is another subtle typesetting mechanism that modifies
the distance between a glyph pair to improve readability. In most cases (but
not always) the distance is decreased. For example, compare the combination
of the letters ‘V’ and ‘A’. With kerning, ‘VA’ is printed. Without kerning
it appears as ‘VA’. Typewriter-like fonts and fonts for terminals where all
glyphs have the same width don’t use kerning.

Request.kern [flag]
Register\n[.kern]

Switch kerning on or off. If the parameter is non-zero or missing, enable
pairwise kerning, otherwise disable it. The read-only number register
.kern is set to 1 if pairwise kerning is enabled, 0 otherwise.
If the font description file contains pairwise kerning information, glyphs
from that font are kerned. Kerning between two glyphs can be inhibited
by placing \& between them: ‘V\&A’.
See Section 8.2.2 [Font File Format], page 182.

Track kerning expands or reduces the space between glyphs. This can be
handy, for example, if you need to squeeze a long word onto a single line or
spread some text to fill a narrow column. It must be used with great care
since it is usually considered bad typography if the reader notices the effect.

Request.tkf f s1 n1 s2 n2
Enable track kerning for font f. If the current font is f the width of every
glyph is increased by an amount between n1 and n2 (n1, n2 can be

Chapter 5: gtroff Reference 107

negative); if the current point size is less than or equal to s1 the width is
increased by n1; if it is greater than or equal to s2 the width is increased
by n2; if the point size is greater than or equal to s1 and less than or
equal to s2 the increase in width is a linear function of the point size.
The default scaling indicator is ‘z’ for s1 and s2, ‘p’ for n1 and n2.
Note that the track kerning amount is added even to the rightmost glyph
in a line; for large values it is thus recommended to increase the line
length by the same amount to compensate it.

Sometimes, when typesetting letters of different fonts, more or less space
at such boundaries are needed. There are two escapes to help with this.

Escape\/
Increase the width of the preceding glyph so that the spacing between
that glyph and the following glyph is correct if the following glyph is a
roman glyph. For example, if an italic f is immediately followed by a ro-
man right parenthesis, then in many fonts the top right portion of the f
overlaps the top left of the right parenthesis. Use this escape sequence
whenever an italic glyph is immediately followed by a roman glyph with-
out any intervening space. This small amount of space is also called italic
correction.

\f[I]f\f[R])
⇒ f)

\f[I]f\/\f[R])
⇒ f)

Escape\,
Modify the spacing of the following glyph so that the spacing between
that glyph and the preceding glyph is correct if the preceding glyph is
a roman glyph. Use this escape sequence whenever a roman glyph is
immediately followed by an italic glyph without any intervening space.
In analogy to above, this space could be called left italic correction, but
this term isn’t used widely.

q\f[I]f
⇒ qf

q\,\f[I]f
⇒ q f

Escape\&
Insert a zero-width character, which is invisible. Its intended use is to
stop interaction of a character with its surrounding.
• It prevents the insertion of extra space after an end-of-sentence char-

acter.

108 The GNU Troff Manual

Test.
Test.

⇒ Test. Test.
Test.\&
Test.

⇒ Test. Test.

• It prevents interpretation of a control character at the beginning of
an input line.

.Test
⇒ warning: ‘Test’ not defined

\&.Test
⇒ .Test

• It prevents kerning between two glyphs.

VA
⇒ VA

V\&A
⇒ VA

• It is needed to map an arbitrary character to nothing in the tr re-
quest (see Section 5.12 [Character Translations], page 82).

Escape\)
This escape is similar to \& except that it behaves like a character declared
with the cflags request to be transparent for the purposes of an end-of-
sentence character.

Its main usage is in macro definitions to protect against arguments start-
ing with a control character.

.de xxx
\)\\$1
..
.de yyy
\&\\$1
..
This is a test.\c
.xxx ’
This is a test.

⇒This is a test.’ This is a test.
This is a test.\c
.yyy ’
This is a test.

⇒This is a test.’ This is a test.

Chapter 5: gtroff Reference 109

5.19 Sizes

gtroff uses two dimensions with each line of text, type size and vertical
spacing. The type size is approximately the height of the tallest glyph.12
Vertical spacing is the amount of space gtroff allows for a line of text;
normally, this is about 20% larger than the current type size. Ratios smaller
than this can result in hard-to-read text; larger than this, it spreads the
text out more vertically (useful for term papers). By default, gtroff uses
10 point type on 12 point spacing.

The difference between type size and vertical spacing is known, by type-
setters, as leading (this is pronounced ‘ledding’).

5.19.1 Changing Type Sizes

Request.ps [size]
Request.ps +size
Request.ps -size
Escape\ssize

Register\n[.s]
Use the ps request or the \s escape to change (increase, decrease) the
type size (in points). Specify size as either an absolute point size, or as
a relative change from the current size. The size 0, or no argument, goes
back to the previous size.
Default scaling indicator of size is ‘z’. If size is zero or negative, it is
set to 1 u.
The read-only number register .s returns the point size in points as a
decimal fraction. This is a string. To get the point size in scaled points,
use the .ps register instead.
.s is associated with the current environment (see Section 5.27 [Environ-
ments], page 141).

snap, snap,
.ps +2
grin, grin,
.ps +2
wink, wink, \s+2nudge, nudge,\s+8 say no more!
.ps 10

The \s escape may be called in a variety of ways. Much like other escapes
there must be a way to determine where the argument ends and the text
begins. Any of the following forms are valid:

12 This is usually the parenthesis. Note that in most cases the real dimensions of the
glyphs in a font are not related to its type size! For example, the standard PostScript
font families ‘Times Roman’, ‘Helvetica’, and ‘Courier’ can’t be used together at 10 pt;
to get acceptable output, the size of ‘Helvetica’ has to be reduced by one point, and
the size of ‘Courier’ must be increased by one point.

110 The GNU Troff Manual

\sn Set the point size to n points. n must be either 0 or in the
range 4 to 39.

\s+n
\s-n Increase or decrease the point size by n points. n must be

exactly one digit.

\s(nn Set the point size to nn points. nn must be exactly two digits.

\s+(nn
\s-(nn
\s(+nn
\s(-nn Increase or decrease the point size by nn points. nn must be

exactly two digits.

Note that \s doesn’t produce an input token in gtroff. As a conse-
quence, it can be used in requests like mc (which expects a single character
as an argument) to change the font on the fly:

.mc \s[20]x\s[0]
See Section 5.19.2 [Fractional Type Sizes], page 111, for yet another syn-
tactical form of using the \s escape.

Request.sizes s1 s2 . . . sn [0]
Some devices may only have certain permissible sizes, in which case
gtroff rounds to the nearest permissible size. The ‘DESC’ file specifies
which sizes are permissible for the device.
Use the sizes request to change the permissible sizes for the current
output device. Arguments are in scaled points; the sizescale line in the
‘DESC’ file for the output device provides the scaling factor. For example,
if the scaling factor is 1000, then the value 12000 is 12 points.
Each argument can be a single point size (such as ‘12000’), or a range of
sizes (such as ‘4000-72000’). You can optionally end the list with a zero.

Request.vs [space]
Request.vs +space
Request.vs -space
Register\n[.v]

Change (increase, decrease) the vertical spacing by space. The default
scaling indicator is ‘p’.
If vs is called without an argument, the vertical spacing is reset to the
previous value before the last call to vs.
gtroff creates a warning of type ‘range’ if space is zero or negative; the
vertical spacing is then set to the vertical resolution (as given in the .V
register).
The read-only number register .v contains the current vertical spacing;
it is associated with the current environment (see Section 5.27 [Environ-
ments], page 141).

Chapter 5: gtroff Reference 111

The effective vertical line spacing consists of four components.
• The vertical line spacing as set with the vs request.
• The post-vertical line spacing as set with the pvs request. This is

vertical space which will be added after a line has been output.
• The extra pre-vertical line space as set with the \x request, using a

negative value. This is vertical space which will be added once before
the current line has been output.

• The extra post-vertical line space as set with the \x request, using a
positive value. This is vertical space which will be added once after the
current line has been output.

It is usually better to use vs or pvs instead of ls to produce double-
spaced documents: vs and pvs have a finer granularity for the inserted
vertical space compared to ls; furthermore, certain preprocessors assume
single-spacing.

See Section 5.10 [Manipulating Spacing], page 76, for more details on the
\x escape and the ls request.

Request.pvs [space]
Request.pvs +space
Request.pvs -space
Register\n[.pvs]

Change (increase, decrease) the post-vertical spacing by space. The de-
fault scaling indicator is ‘p’.
If pvs is called without an argument, the post-vertical spacing is reset to
the previous value before the last call to pvs.
gtroff creates a warning of type ‘range’ if space is zero or negative; the
vertical spacing is then set to zero.
The read-only number register .pvs contains the current post-vertical
spacing; it is associated with the current environment (see Section 5.27
[Environments], page 141).

5.19.2 Fractional Type Sizes

A scaled point is equal to 1/sizescale points, where sizescale is specified in
the ‘DESC’ file (1 by default). There is a new scale indicator ‘z’ which has the
effect of multiplying by sizescale. Requests and escape sequences in gtroff
interpret arguments that represent a point size as being in units of scaled
points, but they evaluate each such argument using a default scale indicator
of ‘z’. Arguments treated in this way are the argument to the ps request,
the third argument to the cs request, the second and fourth arguments to
the tkf request, the argument to the \H escape sequence, and those variants
of the \s escape sequence that take a numeric expression as their argument
(see below).

112 The GNU Troff Manual

For example, suppose sizescale is 1000; then a scaled point is equivalent to
a millipoint; the request ‘.ps 10.25’ is equivalent to ‘.ps 10.25z’ and thus
sets the point size to 10250 scaled points, which is equal to 10.25 points.

gtroff disallows the use of the ‘z’ scale indicator in instances where
it would make no sense, such as a numeric expression whose default scale
indicator was neither ‘u’ nor ‘z’. Similarly it would make no sense to use a
scaling indicator other than ‘z’ or ‘u’ in a numeric expression whose default
scale indicator was ‘z’, and so gtroff disallows this as well.

There is also new scale indicator ‘s’ which multiplies by the number of
units in a scaled point. So, for example, ‘\n[.ps]s’ is equal to ‘1m’. Be sure
not to confuse the ‘s’ and ‘z’ scale indicators.

Register\n[.ps]
A read-only number register returning the point size in scaled points.
.ps is associated with the current environment (see Section 5.27 [Envi-
ronments], page 141).

Register\n[.psr]
Register\n[.sr]

The last-requested point size in scaled points is contained in the .psr
read-only number register. The last requested point size in points as a
decimal fraction can be found in .sr. This is a string-valued read-only
number register.
Note that the requested point sizes are device-independent, whereas the
values returned by the .ps and .s registers are not. For example, if a
point size of 11 pt is requested, and a sizes request (or a sizescale line
in a ‘DESC’ file) specifies 10.95 pt instead, this value is actually used.
Both registers are associated with the current environment (see Sec-
tion 5.27 [Environments], page 141).

The \s escape has the following syntax for working with fractional type
sizes:
\s[n]
\s’n’ Set the point size to n scaled points; n is a numeric expression

with a default scale indicator of ‘z’.
\s[+n]
\s[-n]
\s+[n]
\s-[n]
\s’+n’
\s’-n’
\s+’n’
\s-’n’ Increase or or decrease the point size by n scaled points; n is a

numeric expression with a default scale indicator of ‘z’.
See Section 8.2 [Font Files], page 180.

Chapter 5: gtroff Reference 113

5.20 Strings

gtroff has string variables, which are entirely for user convenience (i.e.
there are no built-in strings exept .T, but even this is a read-write string
variable).

Request.ds name [string]
Request.ds1 name [string]
Escape*n
Escape*(nm
Escape*[name arg1 arg2 . . .]

Define and access a string variable name (one-character name n, two-
character name nm). If name already exists, ds overwrites the previous
definition. Only the syntax form using brackets can take arguments which
are handled identically to macro arguments; the single exception is that
a closing bracket as an argument must be enclosed in double quotes.
See Section 5.6.1.1 [Request Arguments], page 57, and Section 5.22.2
[Parameters], page 123.
Example:

.ds foo a \\$1 test

.
This is *[foo nice].

⇒ This is a nice test.

The * escape interpolates (expands in-place) a previously-defined string
variable. To be more precise, the stored string is pushed onto the input
stack which is then parsed by gtroff. Similar to number registers, it is
possible to nest strings, i.e. string variables can be called within string
variables.
If the string named by the * escape does not exist, it is defined as empty,
and a warning of type ‘mac’ is emitted (see Section 5.34 [Debugging],
page 154, for more details).
Caution: Unlike other requests, the second argument to the ds request
takes up the entire line including trailing spaces. This means that com-
ments on a line with such a request can introduce unwanted space into a
string.

.ds UX \s-1UNIX\s0\u\s-3tm\s0\d \" UNIX trademark

Instead the comment should be put on another line or have the comment
escape adjacent with the end of the string.

.ds UX \s-1UNIX\s0\u\s-3tm\s0\d\" UNIX trademark

To produce leading space the string can be started with a double quote.
No trailing quote is needed; in fact, any trailing quote is included in your
string.

.ds sign " Yours in a white wine sauce,

114 The GNU Troff Manual

Strings are not limited to a single line of text. A string can span several
lines by escaping the newlines with a backslash. The resulting string is
stored without the newlines.

.ds foo lots and lots \
of text are on these \
next several lines

It is not possible to have real newlines in a string. To put a single double
quote character into a string, use two consecutive double quote characters.

The ds1 request turns off compatibility mode while interpreting a string.
To be more precise, a compatibility save input token is inserted at the
beginning of the string, and a compatibility restore input token at the
end.

.nr xxx 12345

.ds aa The value of xxx is \\n[xxx].

.ds1 bb The value of xxx ix \\n[xxx].

.

.cp 1

.
*(aa

⇒ warning: number register ‘[’ not defined
⇒ The value of xxx is 0xxx].

*(bb
⇒ The value of xxx ix 12345.

Strings, macros, and diversions (and boxes) share the same name space.
Internally, even the same mechanism is used to store them. This has some
interesting consequences. For example, it is possible to call a macro with
string syntax and vice versa.

.de xxx
a funny test.
..
This is *[xxx]

⇒ This is a funny test.

.ds yyy a funny test
This is
.yyy

⇒ This is a funny test.

Diversions and boxes can be also called with string syntax.

Another consequence is that you can copy one-line diversions or boxes to
a string.

Chapter 5: gtroff Reference 115

.di xxx
a \fItest\fR
.br
.di
.ds yyy This is *[xxx]\c
*[yyy].

⇒ This is a test.

As the previous example shows, it is possible to store formatted output
in strings. The \c escape prevents the insertion of an additional blank
line in the output.

Copying diversions longer than a single output line produces unexpected
results.

.di xxx
a funny
.br
test
.br
.di
.ds yyy This is *[xxx]\c
*[yyy].

⇒ test This is a funny.

Usually, it is not predictable whether a diversion contains one or more
output lines, so this mechanism should be avoided. With unix troff,
this was the only solution to strip off a final newline from a diversion.
Another disadvantage is that the spaces in the copied string are already
formatted, making them unstretchable. This can cause ugly results.

A clean solution to this problem is available in GNU troff, using the
requests chop to remove the final newline of a diversion, and unformat
to make the horizontal spaces stretchable again.

.box xxx
a funny
.br
test
.br
.box
.chop xxx
.unformat xxx
This is *[xxx].

⇒ This is a funny test.

See Section 5.33 [Gtroff Internals], page 152, for more information.

116 The GNU Troff Manual

Request.as name [string]
Request.as1 name [string]

The as request is similar to ds but appends string to the string stored as
name instead of redefining it. If name doesn’t exist yet, it is created.

.as sign " with shallots, onions and garlic,
The as1 request is similar to as, but compatibility mode is switched off
while the appended string is interpreted. To be more precise, a com-
patibility save input token is inserted at the beginning of the appended
string, and a compatibility restore input token at the end.

Rudimentary string manipulation routines are given with the next two
requests.

Request.substring str n1 [n2]
Replace the string named str with the substring defined by the indices n1
and n2. The first character in the string has index 0. If n2 is omitted, it
is taken to be equal to the string’s length. If the index value n1 or n2 is
negative, it is counted from the end of the string, going backwards: The
last character has index −1, the character before the last character has
index −2, etc.

.ds xxx abcdefgh

.substring xxx 1 -4
*[xxx]

⇒ bcde

Request.length reg str
Compute the number of characters of str and return it in the number
register reg. If reg doesn’t exist, it is created. str is read in copy mode.

.ds xxx abcd\h’3i’efgh

.length yyy \n[xxx]
\n[yyy]

⇒ 14

Request.rn xx yy
Rename the request, macro, diversion, or string xx to yy.

Request.rm xx
Remove the request, macro, diversion, or string xx. gtroff treats subse-
quent invocations as if the object had never been defined.

Request.als new old
Create an alias named new for the request, string, macro, or diversion
object named old. The new name and the old name are exactly equivalent
(it is similar to a hard rather than a soft link). If old is undefined, gtroff
generates a warning of type ‘mac’ and ignores the request.

Chapter 5: gtroff Reference 117

Request.chop xx
Remove (chop) the last character from the macro, string, or diversion
named xx. This is useful for removing the newline from the end of diver-
sions that are to be interpolated as strings. This command can be used
repeatedly; see Section 5.33 [Gtroff Internals], page 152, for details on
nodes inserted additionally by gtroff.

See Section 5.5 [Identifiers], page 54, and Section 5.6.3.1 [Comments],
page 60.

5.21 Conditionals and Loops

5.21.1 Operators in Conditionals

In if and while requests, there are several more operators available:

e
o True if the current page is even or odd numbered (respectively).

n True if the document is being processed in nroff mode (i.e., the
.nroff command has been issued).

t True if the document is being processed in troff mode (i.e., the
.troff command has been issued).

v Always false. This condition is for compatibility with other
troff versions only.

’xxx’yyy’
True if the string xxx is equal to the string yyy. Other characters
can be used in place of the single quotes; the same set of delim-
iters as for the \D escape is used (see Section 5.6.3 [Escapes],
page 58). gtroff formats the strings before being compared:

.ie "|"\fR|\fP" \
true
.el \
false

⇒ true

The resulting motions, glyph sizes, and fonts have to match,13
and not the individual motion, size, and font requests. In the
previous example, ‘|’ and ‘\fR|\fP’ both result in a roman ‘|’
glyph with the same point size and at the same location on
the page, so the strings are equal. If ‘.ft I’ had been added
before the ‘.ie’, the result would be “false” because (the first)
‘|’ produces an italic ‘|’ rather than a roman one.

13 The created output nodes must be identical. See Section 5.33 [Gtroff Internals],
page 152.

118 The GNU Troff Manual

r xxx True if there is a number register named xxx.

d xxx True if there is a string, macro, diversion, or request named xxx.

m xxx True if there is a color named xxx.

c g True if there is a glyph g available14; g is either an ascii char-
acter or a special character (\(gg or \[ggg]); the condition is
also true if g has been defined by the char request.

Note that these operators can’t be combined with other operators like ‘:’
or ‘&’; only a leading ‘!’ (without whitespace between the exclamation mark
and the operator) can be used to negate the result.

.nr xxx 1

.ie !r xxx \
true
.el \
false

⇒ false

A whitespace after ‘!’ always evaluates to zero (this bizarre behaviour is
due to compatibility with unix troff).

.nr xxx 1

.ie ! r xxx \
true
.el \
false

⇒ r xxx true

It is possible to omit the whitespace before the argument to the ‘r’, ‘d’,
and ‘c’ operators.

See Section 5.4 [Expressions], page 52.

5.21.2 if-else

gtroff has if-then-else constructs like other languages, although the for-
matting can be painful.

Request.if expr anything
Evaluate the expression expr, and executes anything (the remainder of
the line) if expr evaluates to non-zero (true). anything is interpreted as
though it was on a line by itself (except that leading spaces are swallowed).
See Section 5.4 [Expressions], page 52, for more info.

14 The name of this conditional operator is a misnomer since it tests names of output
glyphs.

Chapter 5: gtroff Reference 119

.nr xxx 1

.nr yyy 2

.if ((\n[xxx] == 1) & (\n[yyy] == 2)) true
⇒ true

Request.nop anything
Executes anything. This is similar to .if 1.

Request.ie expr anything
Request.el anything

Use the ie and el requests to write an if-then-else. The first request is
the ‘if’ part and the latter is the ‘else’ part.

.ie n .ls 2 \" double-spacing in nroff

.el .ls 1 \" single-spacing in troff

Escape\{
Escape\}

In many cases, an if (or if-else) construct needs to execute more than one
request. This can be done using the \{ and \} escapes. The following
example shows the possible ways to use these escapes (note the position
of the opening and closing braces).

.ie t \{\

. ds lq ‘‘

. ds rq ’’

.\}

.el \

.\{\

. ds lq "

. ds rq "\}

See Section 5.4 [Expressions], page 52.

5.21.3 while

gtroff provides a looping construct using the while request, which is
used much like the if (and related) requests.

Request.while expr anything
Evaluate the expression expr, and repeatedly execute anything (the re-
mainder of the line) until expr evaluates to 0.

.nr a 0 1

.while (\na < 9) \{\
\n+a,
.\}
\n+a

⇒ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

120 The GNU Troff Manual

Some remarks.
• The body of a while request is treated like the body of a de request:

gtroff temporarily stores it in a macro which is deleted after the
loop has been exited. It can considerably slow down a macro if the
body of the while request (within the macro) is large. Each time
the macro is executed, the while body is parsed and stored again as
a temporary macro.

.de xxx

. nr num 10

. while (\\n[num] > 0) \{\

. \" many lines of code

. nr num -1

. \}

..

The traditional and ofter better solution (unix troff doesn’t have
the while request) is to use a recursive macro instead which is parsed
only once during its definition.

.de yyy

. if (\\n[num] > 0) \{\

. \" many lines of code

. nr num -1

. yyy

. \}

..

.

.de xxx

. nr num 10

. yyy

..

Note that the number of available recursion levels is set to 1000 (this
is a compile-time constant value of gtroff).

• The closing brace of a while body must end a line.
.if 1 \{\
. nr a 0 1
. while (\n[a] < 10) \{\
. nop \n+[a]
.\}\}

⇒ unbalanced \{ \}

Request.break
Break out of a while loop. Be sure not to confuse this with the br request
(causing a line break).

Chapter 5: gtroff Reference 121

Request.continue
Finish the current iteration of a while loop, immediately restarting the
next iteration.

See Section 5.4 [Expressions], page 52.

5.22 Writing Macros

A macro is a collection of text and embedded commands which can be
invoked multiple times. Use macros to define common operations.

Request.de name [end]
Request.de1 name [end]
Request.dei name [end]

Define a new macro named name. gtroff copies subsequent lines (start-
ing with the next one) into an internal buffer until it encounters the line
‘..’ (two dots). The optional second argument to de changes this to a
macro to ‘.end’.
There can be whitespace after the first dot in the line containing the
ending token (either ‘.’ or macro ‘end’).
Here a small example macro called ‘P’ which causes a break and inserts
some vertical space. It could be used to separate paragraphs.

.de P

. br

. sp .8v

..

The following example defines a macro within another. Remember that
expansion must be protected twice; once for reading the macro and once
for executing.

\# a dummy macro to avoid a warning
.de end
..
.
.de foo
. de bar end
. nop \f[B]Hallo \\\\$1!\f[]
. end
..
.
.foo
.bar Joe

⇒ Hallo Joe!

122 The GNU Troff Manual

Since \f has no expansion, it isn’t necessary to protect its backslash.
Had we defined another macro within bar which takes a parameter, eight
backslashes would be necessary before ‘$1’.
The de1 request turns off compatibility mode while executing the macro.
On entry, the current compatibility mode is saved and restored at exit.

.nr xxx 12345

.

.de aa
The value of xxx is \\n[xxx].
..
.de1 bb
The value of xxx ix \\n[xxx].
..
.
.cp 1
.
.aa

⇒ warning: number register œ’ not defined
⇒ The value of xxx is 0xxx].

.bb
⇒ The value of xxx ix 12345.

The dei request defines a macro indirectly. That is, it expands strings
whose names are name or end before performing the append.
This:

.ds xx aa

.ds yy bb

.dei xx yy

is equivalent to:
.de aa bb

Using ‘trace.tmac’, you can trace calls to de and de1.
Note that macro identifiers are shared with identifiers for strings and
diversions.

Request.am xx
Request.am1 xx
Request.ami xx yy

Works similarly to de except it appends onto the macro named xx. So,
to make the previously defined ‘P’ macro actually do indented instead of
block paragraphs, add the necessary code to the existing macro like this:

.am P

.ti +5n

..

Chapter 5: gtroff Reference 123

The am1 request turns off compatibility mode while executing the ap-
pended macro piece. To be more precise, a compatibility save input token
is inserted at the beginning of the appended code, and a compatibility
restore input token at the end.
The ami request appends indirectly, meaning that gtroff expands strings
whose names are xx or yy before performing the append.
Using ‘trace.tmac’, you can trace calls to am and am1.

See Section 5.20 [Strings], page 113, for the als request to rename a
macro.

The de, am, di, da, ds, and as requests (together with its variants) only
create a new object if the name of the macro, diversion or string diversion is
currently undefined or if it is defined to be a request; normally they modify
the value of an existing object.

Request.return
Exit a macro, immediately returning to the caller.

5.22.1 Copy-in Mode

When gtroff reads in the text for a macro, string, or diversion, it copies
the text (including request lines, but excluding escapes) into an internal
buffer. Escapes are converted into an internal form, except for \n, \$, *,
\\ and \〈RET〉 which are evaluated and inserted into the text where the
escape was located. This is known as copy-in mode or copy mode.

What this means is that you can specify when these escapes are to be
evaluated (either at copy-in time or at the time of use) by insulating the
escapes with an extra backslash. Compare this to the \def and \edef com-
mands in TEX.

The following example prints the numbers 20 and 10:
.nr x 20
.de y
.nr x 10
\&\nx
\&\\nx
..
.y

5.22.2 Parameters

The arguments to a macro or string can be examined using a variety of
escapes.

Register\n[.$]
The number of arguments passed to a macro or string. This is a read-only
number register.

124 The GNU Troff Manual

Any individual argument can be retrieved with one of the following es-
capes:

Escape\$n
Escape\$(nn
Escape\$[nnn]

Retrieve the n th, nn th or nnn th argument. As usual, the first form
only accepts a single number (larger than zero), the second a two-digit
number (larger or equal to 10), and the third any positive integer value
(larger than zero). Macros and strings can have an unlimited number of
arguments. Note that due to copy-in mode, use two backslashes on these
in actual use to prevent interpolation until the macro is actually invoked.

Request.shift [n]
Shift the arguments 1 position, or as many positions as specified by its
argument. After executing this request, argument i becomes argument
i − n; arguments 1 to n are no longer available. Shifting by negative
amounts is currently undefined.

Escape\$*
Escape\$@

In some cases it is convenient to use all of the arguments at once (for
example, to pass the arguments along to another macro). The \$* escape
concatenates all the arguments separated by spaces. A similar escape
is \$@, which concatenates all the arguments with each surrounded by
double quotes, and separated by spaces. If not in compatibility mode,
the input level of double quotes is preserved (see Section 5.6.1.1 [Request
Arguments], page 57).

Escape\$0
The name used to invoke the current macro. The als request can make
a macro have more than one name.

.de generic-macro

. ...

. if \\n[error] \{\

. tm \\$0: Houston, we have a problem.

. return

. \}

..

.

.als foo generic-macro

.als bar generic-macro

See Section 5.6.1.1 [Request Arguments], page 57.

Chapter 5: gtroff Reference 125

5.23 Page Motions

See Section 5.10 [Manipulating Spacing], page 76, for a discussion of the
main request for vertical motion, sp.

Request.mk [reg]
Request.rt [dist]

The request mk can be used to mark a location on a page, for movement
to later. This request takes a register name as an argument in which to
store the current page location. With no argument it stores the location
in an internal register. The results of this can be used later by the rt or
the sp request (or the \v escape).
The rt request returns upwards to the location marked with the last mk
request. If used with an argument, return to a position which distance
from the top of the page is dist (no previous call to mk is necessary in this
case). Default scaling indicator is ‘v’.
Here a primitive solution for a two-column macro.

.nr column-length 1.5i

.nr column-gap 4m

.nr bottom-margin 1m

.

.de 2c

. br

. mk

. ll \\n[column-length]u

. wh -\\n[bottom-margin]u 2c-trap

. nr right-side 0

..

.

.de 2c-trap

. ie \\n[right-side] \{\

. nr right-side 0

. po -(\\n[column-length]u + \\n[column-gap]u)

. \" remove trap

. wh -\\n[bottom-margin]u

. \}

. el \{\

. \" switch to right side

. nr right-side 1

. po +(\\n[column-length]u + \\n[column-gap]u)

. rt

. \}

..

.

126 The GNU Troff Manual

.pl 1.5i

.ll 4i
This is a small test which shows how the
rt request works in combination with mk.

.2c
Starting here, text is typeset in two columns.
Note that this implementation isn’t robust
and thus not suited for a real two-column
macro.

Result:
This is a small test which shows how the
rt request works in combination with mk.

Starting here, isn’t robust
text is typeset and thus not
in two columns. suited for a
Note that this real two-column
implementation macro.

The following escapes give fine control of movements about the page.

Escape\v’e’
Move vertically, usually from the current location on the page (if no
absolute position operator ‘|’ is used). The argument e specifies the
distance to move; positive is downwards and negative upwards. The
default scaling indicator for this escape is ‘v’. Beware, however, that
gtroff continues text processing at the point where the motion ends,
so you should always balance motions to avoid interference with text
processing.
\v doesn’t trigger a trap. This can be quite useful; for example, consider
a page bottom trap macro which prints a marker in the margin to indicate
continuation of a footnote or something similar.

There are some special-case escapes for vertical motion.

Escape\r
Move upwards 1 v.

Escape\u
Move upwards .5 v.

Escape\d
Move down .5 v.

Chapter 5: gtroff Reference 127

Escape\h’e’
Move horizontally, usually from the current location (if no absolute po-
sition operator ‘|’ is used). The expression e indicates how far to move:
positive is rightwards and negative leftwards. The default scaling indica-
tor for this escape is ‘m’.

There are a number of special-case escapes for horizontal motion.

Escape\〈SP〉
An unbreakable and unpaddable (i.e. not expanded during filling) space.
(Note: This is a backslash followed by a space.)

Escape\~
An unbreakable space that stretches like a normal inter-word space when
a line is adjusted.

Escape\|
A 1/6 th em space. Ignored for TTY output devices (rounded to zero).

Escape\^
A 1/12 th em space. Ignored for TTY output devices (rounded to zero).

Escape\0
A space the size of a digit.

The following string sets the TEX logo:
.ds TeX T\h’-.1667m’\v’.224m’E\v’-.224m’\h’-.125m’X

Escape\w’text’
Register\n[st]
Register\n[sb]
Register\n[rst]
Register\n[rsb]
Register\n[ct]
Register\n[ssc]
Register\n[skw]

Return the width of the specified text in basic units. This allows hori-
zontal movement based on the width of some arbitrary text (e.g. given as
an argument to a macro).

The length of the string ‘abc’ is \w’abc’u.
⇒ The length of the string ‘abc’ is 72u.

Font changes may occur in text which don’t affect current settings.
After use, \w sets several registers:

128 The GNU Troff Manual

st
sb The highest and lowest point of the baseline, respectively, in

text.

rst
rsb Like the st and sb registers, but takes account of the heights

and depths of glyphs. With other words, this gives the highest
and lowest point of text.

ct Defines the kinds of glyphs occurring in text:

0 only short glyphs, no descenders or tall glyphs.

1 at least one descender.

2 at least one tall glyph.

3 at least one each of a descender and a tall glyph.

ssc The amount of horizontal space (possibly negative) that
should be added to the last glyph before a subscript.

skw How far to right of the center of the last glyph in the \w
argument, the center of an accent from a roman font should
be placed over that glyph.

Escape\kp
Escape\k(ps
Escape\k[position]

Store the current horizontal position in the input line in number register
with name position (one-character name p, two-character name ps). Use
this, for example, to return to the beginning of a string for highlighting
or other decoration.

Register\n[hp]
The current horizontal position at the input line.

Register\n[.k]
A read-only number register containing the current horizontal output
position.

Escape\o’abc’
Overstrike glyphs a, b, c, . . . ; the glyphs are centered, and the resulting
spacing is the largest width of the affected glyphs.

Escape\zg
Print glyph g with zero width, i.e., without spacing. Use this to overstrike
glyphs left-aligned.

Chapter 5: gtroff Reference 129

Escape\Z’anything’
Print anything, then restore the horizontal and vertical position. The
argument may not contain tabs or leaders.
The following is an example of a strike-through macro:

.de ST

.nr ww \w’\\$1’
\Z@\v’-.25m’\l’\\n[ww]u’@\\$1
..
.
This is
.ST "a test"
an actual emergency!

5.24 Drawing Requests

gtroff provides a number of ways to draw lines and other figures on
the page. Used in combination with the page motion commands (see Sec-
tion 5.23 [Page Motions], page 125, for more info), a wide variety of figures
can be drawn. However, for complex drawings these operations can be quite
cumbersome, and it may be wise to use graphic preprocessors like gpic or
ggrn. See Section 6.3 [gpic], page 163, and Section 6.4 [ggrn], page 163, for
more information.

All drawing is done via escapes.

Escape\l’l’
Escape\l’lg’

Draw a line horizontally. l is the length of the line to be drawn. If it
is positive, start the line at the current location and draw to the right;
its end point is the new current location. Negative values are handled
differently: The line starts at the current location and draws to the left,
but the current location doesn’t move.
l can also be specified absolutely (i.e. with a leading ‘|’) which draws
back to the beginning of the input line. Default scaling indicator is ‘m’.
The optional second parameter g is a glyph to draw the line with. If
this second argument is not specified, gtroff uses the underscore glyph,
\[ru].
To separate the two arguments (to prevent gtroff from interpreting a
drawing glyph as a scaling indicator if the glyph is represented by a single
character) use \&.
Here a small useful example:

.de box
\[br]\\$*\[br]\l’|0\[rn]’\l’|0\[ul]’
..

130 The GNU Troff Manual

Note that this works by outputting a box rule (a vertical line), then the
text given as an argument and then another box rule. Finally, the line
drawing escapes both draw from the current location to the beginning of
the input line – this works because the line length is negative, not moving
the current point.

Escape\L’l’
Escape\L’lg’

Draw vertical lines. Its parameters are similar to the \l escape, except
that the default scaling indicator is ‘v’. The movement is downwards
for positive values, and upwards for negative values. The default glyph
is the box rule glyph, \[br]. As with the vertical motion escapes, text
processing blindly continues where the line ends.

This is a \L’3v’test.

Here the result, produced with grotty.

This is a
|
|
|test.

Escape\D’command arg . . .’
The \D escape provides a variety of drawing functions. Note that on
character devices, only vertical and horizontal lines are supported within
grotty; other devices may only support a subset of the available drawing
functions.

The default scaling indicator for all subcommands of \D is ‘m’ for hori-
zontal distances and ‘v’ for vertical ones. Exceptions are \D’f ...’ and
\D’t ...’ which use u as the default.

\D’l dx dy’
Draw a line from the current location to the relative point
specified by (dx,dy).

The following example is a macro for creating a box around a
text string; for simplicity, the box margin is taken as a fixed
value, 0.2 m.

Chapter 5: gtroff Reference 131

.de BOX

. nr @wd \w’\\$1’
\h’.2m’\
\h’-.2m’\v’(.2m - \\n[rsb]u)’\
\D’l 0 -(\\n[rst]u - \\n[rsb]u + .4m)’\
\D’l (\\n[@wd]u + .4m) 0’\
\D’l 0 (\\n[rst]u - \\n[rsb]u + .4m)’\
\D’l -(\\n[@wd]u + .4m) 0’\
\h’.2m’\v’-(.2m - \\n[rsb]u)’\
\\$1\
\h’.2m’
..

First, the width of the string is stored in register @wd. Then,
four lines are drawn to form a box, properly offset by the box
margin. The registers rst and rsb are set by the \w escape,
containing the largest height and depth of the whole string.

\D’c d’ Draw a circle with a diameter of d with the leftmost point at
the current position.

\D’C d’ Draw a solid circle with the same parameters as an outlined
circle. No outline is drawn.

\D’e x y’ Draw an ellipse with a horizontal diameter of x and a vertical
diameter of y with the leftmost point at the current position.

\D’E x y’ Draw a solid ellipse with the same parameters as an outlined
ellipse. No outline is drawn.

\D’a dx1 dy1 dx2 dy2’
Draw an arc clockwise from the current location through the
two specified relative locations (dx1,dy1) and (dx2,dy2). The
coordinates of the first point are relative to the current posi-
tion, and the coordinates of the second point are relative to
the first point.

\D’~ dx1 dy1 dx2 dy2 ...’
Draw a spline from the current location to the relative point
(dx1,dy1) and then to (dx2,dy2), and so on.

\D’f n’ Set the shade of gray to be used for filling solid objects to n;
n must be an integer between 0 and 1000, where 0 corre-
sponds solid white and 1000 to solid black, and values in
between correspond to intermediate shades of gray. This ap-
plies only to solid circles, solid ellipses, and solid polygons.
By default, a level of 1000 is used.

\D’p dx1 dy1 dx2 dy2 ...’
Draw a polygon from the current location to the relative po-
sition (dx1,dy1) and then to (dx2,dy2) and so on. When the

132 The GNU Troff Manual

specified data points are exhausted, a line is drawn back to
the starting point.

\D’P dx1 dy1 dx2 dy2 ...’
Draw a solid polygon with the same parameters as an outlined
polygon. No outline is drawn.
Here a better variant of the box macro to fill the box with
some color. Note that the box must be drawn before the text
since colors in gtroff are not transparent; the filled polygon
would hide the text completely.

.de BOX

. nr @wd \w’\\$1’
\h’.2m’\
\h’-.2m’\v’(.2m - \\n[rsb]u)’\
\M[lightcyan]\
\D’P 0 -(\\n[rst]u - \\n[rsb]u + .4m) \

(\\n[@wd]u + .4m) 0 \
0 (\\n[rst]u - \\n[rsb]u + .4m) \
-(\\n[@wd]u + .4m) 0’\

\h’.2m’\v’-(.2m - \\n[rsb]u)’\
\M[]\
\\$1\
\h’.2m’
..

\D’t n’ Set the current line thickness to n machine units. A value of
zero selects the smallest available line thickness. A negative
value makes the line thickness proportional to the current
point size (this is the default behaviour of at&t troff).

See Section 8.1.2.3 [Graphics Commands], page 172.

Escape\b’string’
Pile a sequence of glyphs vertically, and center it vertically on the current
line. Use it to build large brackets and braces.
Here an example how to create a large opening brace:

\b’\[lt]\[bv]\[lk]\[bv]\[lb]’

The first glyph is on the top, the last glyph in string is at the bottom.
Note that gtroff separates the glyphs vertically by 1 m, and the whole
object is centered 0.5 m above the current baseline; the largest glyph
width is used as the width for the whole object. This rather unflexible
positioning algorithm doesn’t work with ‘-Tdvi’ since the bracket pieces
vary in height for this device. Instead, use the eqn preprocessor.
See Section 5.10 [Manipulating Spacing], page 76, how to adjust the ver-
tical spacing with the \x escape.

Chapter 5: gtroff Reference 133

5.25 Traps

Traps are locations, which, when reached, call a specified macro. These
traps can occur at a given location on the page, at a given location in the
current diversion, at a blank line, after a certain number of input lines, or
at the end of input.

Setting a trap is also called planting. It is also said that a trap is sprung
if the associated macro is executed.

5.25.1 Page Location Traps

Page location traps perform an action when gtroff reaches or passes a
certain vertical location on the page. Page location traps have a variety of
purposes, including:

setting headers and footers

setting body text in multiple columns

setting footnotes

Request.vpt flag
Register\n[.vpt]

Enable vertical position traps if flag is non-zero, or disables them oth-
erwise. Vertical position traps are traps set by the wh or dt requests.
Traps set by the it request are not vertical position traps. The param-
eter that controls whether vertical position traps are enabled is global.
Initially vertical position traps are enabled. The current setting of this is
available in the .vpt read-only number register.

Request.wh dist [macro]
Set a page location trap. Positive values for dist set the trap relative to
the top of the page; negative values set the trap relative to the bottom
of the page. Default scaling indicator is ‘v’.

macro is the name of the macro to execute when the trap is sprung. If
macro is missing, remove the first trap (if any) at dist.

The following is a simple example of how many macro packages set head-
ers and footers.

134 The GNU Troff Manual

.de hd \" Page header
’ sp .5i
. tl ’Title’’date’
’ sp .3i
..
.
.de fo \" Page footer
’ sp 1v
. tl ’’%’’
’ bp
..
.
.wh 0 hd \" trap at top of the page
.wh -1i fo \" trap one inch from bottom

A trap at or below the bottom of the page is ignored; it can be made
active by either moving it up or increasing the page length so that the
trap is on the page.

It is possible to have more than one trap at the same location; to do
so, the traps must be defined at different locations, then moved together
with the ch request; otherwise the second trap would replace the first
one. Earlier defined traps hide later defined traps if moved to the same
position (the many empty lines caused by the bp request are omitted):

.de a

. nop a

..

.de b

. nop b

..

.de c

. nop c

..

.

.wh 1i a

.wh 2i b

.wh 3i c

.bp
⇒ a b c

.ch b 1i

.ch c 1i

.bp
⇒ a

Chapter 5: gtroff Reference 135

.ch a 0.5i

.bp
⇒ a b

Register\n[.t]
A read-only number register holding the distance to the next trap.
If there are no traps between the current position and the bottom of the
page, it contains the distance to the page bottom. In a diversion, the
distance to the page bottom is infinite (the returned value is the biggest
integer which can be represented in groff) if there are no diversion traps.

Request.ch macro dist
Change the location of a trap. The first argument is the name of the
macro to be invoked at the trap, and the second argument is the new
location for the trap (note that the parameters are specified the opposite
of the wh request). This is useful for building up footnotes in a diversion
to allow more space at the bottom of the page for them.
Default scaling indicator for dist is ‘v’. If dist is missing, the trap is
removed.

Register\n[.ne]
The read-only number register .ne contains the amount of space that was
needed in the last ne request that caused a trap to be sprung. Useful in
conjunction with the .trunc register. See Section 5.17 [Page Control],
page 93, for more information.

Register\n[.trunc]
A read-only register containing the amount of vertical space truncated by
the most recently sprung vertical position trap, or, if the trap was sprung
by an ne request, minus the amount of vertical motion produced by the
ne request. In other words, at the point a trap is sprung, it represents
the difference of what the vertical position would have been but for the
trap, and what the vertical position actually is.

5.25.2 Diversion Traps

Request.dt dist macro
Set a trap within a diversion. dist is the location of the trap (identical to
the .wh request; default scaling indicator is ‘v’) and macro is the name
of the macro to be invoked. The number register .t still works within
diversions. See Section 5.26 [Diversions], page 137, for more information.

136 The GNU Troff Manual

5.25.3 Input Line Traps

Request.it n macro
Request.itc n macro

Set an input line trap. n is the number of lines of input which may be
read before springing the trap, macro is the macro to be invoked. Request
lines are not counted as input lines.

For example, one possible use is to have a macro which prints the next
n lines in a bold font.

.de B

. it \\$1 B-end

. ft B

..

.

.de B-end

. ft R

..

The itc request is identical, except that a line interrupted with \c counts
as one input line.

Both requests are associated with the current environment (see Sec-
tion 5.27 [Environments], page 141); switching to another environment
disables the current input trap, and going back reactivates it, restoring
the number of already processed lines.

5.25.4 Blank Line Traps

Request.blm macro
Set a blank line trap. gtroff executes macro when it encounters a blank
line in the input file.

5.25.5 End-of-input Traps

Request.em macro
Set a trap at the end of input. macro is executed after the last line of the
input file has been processed.

For example, if the document had to have a section at the bottom of the
last page for someone to approve it, the em request could be used.

Chapter 5: gtroff Reference 137

.de approval

. ne 5v

. sp |(\\n[.t] - 6v)

. in +4i

. lc _

. br
Approved:\t\a
. sp
Date:\t\t\a
..
.
.em approval

5.26 Diversions

In gtroff it is possible to divert text into a named storage area. Due
to the similarity to defining macros it is sometimes said to be stored in a
macro. This is used for saving text for output at a later time, which is useful
for keeping blocks of text on the same page, footnotes, tables of contents,
and indices.

For orthogonality it is said that gtroff is in the top-level diversion if no
diversion is active (i.e., the data is diverted to the output device).

Request.di macro
Request.da macro

Begin a diversion. Like the de request, it takes an argument of a macro
name to divert subsequent text into. The da macro appends to an existing
diversion.

di or da without an argument ends the diversion.

Request.box macro
Request.boxa macro

Begin (or appends to) a diversion like the di and da requests. The dif-
ference is that box and boxa do not include a partially-filled line in the
diversion.

Compare this:

138 The GNU Troff Manual

Before the box.
.box xxx
In the box.
.br
.box
After the box.
.br

⇒ Before the box. After the box.
.xxx

⇒ In the box.

with this:
Before the diversion.
.di yyy
In the diversion.
.br
.di
After the diversion.
.br

⇒ After the diversion.
.yyy

⇒ Before the diversion. In the diversion.

box or boxa without an argument ends the diversion.

Register\n[.z]
Register\n[.d]

Diversions may be nested. The read-only number register .z contains
the name of the current diversion (this is a string-valued register). The
read-only number register .d contains the current vertical place in the
diversion. If not in a diversion it is the same as the register nl.

Register\n[.h]
The high-water mark on the current page. It corresponds to the text
baseline of the lowest line on the page. This is a read-only register.

.tm .h==\n[.h], nl==\n[nl]
⇒ .h==0, nl==-1

This is a test.
.br
.sp 2
.tm .h==\n[.h], nl==\n[nl]

⇒ .h==40, nl==120

As can be seen in the previous example, empty lines are not considered
in the return value of the .h register.

Chapter 5: gtroff Reference 139

Register\n[dn]
Register\n[dl]

After completing a diversion, the read-write number registers dn and dl
contain the vertical and horizontal size of the diversion.

.\" Center text both horizontally & vertically

.

.\" Enclose macro definitions in .eo and .ec

.\" to avoid the doubling of the backslash

.eo

.\" macro .(c starts centering mode

.de (c

. br

. ev (c

. evc 0

. in 0

. nf

. di @c

..

.\" macro .)c terminates centering mode

.de)c

. br

. ev

. di

. nr @s (((\n[.t]u - \n[dn]u) / 2u) - 1v)

. sp \n[@s]u

. ce 1000

. @c

. ce 0

. sp \n[@s]u

. br

. fi

. rr @s

. rm @s

. rm @c

..

.\" End of macro definitions, restore escape mechanism

.ec

Escape\!
Escape\?anything\?

Prevent requests, macros, and escapes from being interpreted when read
into a diversion. This takes the given text and transparently embeds it
into the diversion. This is useful for macros which shouldn’t be invoked
until the diverted text is actually output.

140 The GNU Troff Manual

The \! escape transparently embeds text up to and including the end
of the line. The \? escape transparently embeds text until the next
occurrence of the \? escape. For example:

\?anything\?

anything may not contain newlines; use \! to embed newlines in a diver-
sion. The escape sequence \? is also recognized in copy mode and turned
into a single internal code; it is this code that terminates anything. Thus
the following example prints 4.

.nr x 1

.nf

.di d
\?\\?\\\\?\\\\\\\\nx\\\\?\\?\?
.di
.nr x 2
.di e
.d
.di
.nr x 3
.di f
.e
.di
.nr x 4
.f

Both escapes read the data in copy mode.
If \! is used in the top-level diversion, its argument is directly embedded
into the gtroff intermediate output. This can be used for example to
control a postprocessor which processes the data before it is sent to the
device driver.
The \? escape used in the top-level diversion produces no output at all;
its argument is simply ignored.

Request.output string
Emit string directly to the gtroff intermediate output (subject to copy-
mode interpretation); this is similar to \! used at the top level. An initial
double quote in string is stripped off to allow initial blanks.
This request can’t be used before the first page has started – if you get
an error, simply insert .br before the output request.
Without argument, output is ignored.
Use with caution! It is normally only needed for mark-up used by a
postprocessor which does something with the output before sending it to
the output device, filtering out string again.

Chapter 5: gtroff Reference 141

Request.asciify div
Unformat the diversion specified by div in such a way that ascii charac-
ters, characters translated with the trin request, space characters, and
some escape sequences that were formatted and diverted are treated like
ordinary input characters when the diversion is reread. It can be also
used for gross hacks; for example, the following sets register n to 1.

.tr @.

.di x
@nr n 1
.br
.di
.tr @@
.asciify x
.x

See Section 5.22.1 [Copy-in Mode], page 123.

Request.unformat div
Like asciify, unformat the specified diversion. However, unformat only
unformats spaces and tabs between words. Unformatted tabs are treated
as input tokens, and spaces are stretchable again.
The vertical size of lines is not preserved; glyph information (font, font
size, space width, etc.) is retained.

5.27 Environments

It happens frequently that some text should be printed in a certain format
regardless of what may be in effect at the time, for example, in a trap
invoked macro to print headers and footers. To solve this gtroff processes
text in environments. An environment contains most of the parameters that
control text processing. It is possible to switch amongst these environments;
by default gtroff processes text in environment 0. The following is the
information kept in an environment.
• font parameters (size, family, style, glyph height and slant, space and

sentence space size)
• page parameters (line length, title length, vertical spacing, line spacing,

indentation, line numbering, centering, right-justifying, underlining, hy-
phenation data)

• fill and adjust mode
• tab stops, tab and leader characters, escape character, no-break and

hyphen indicators, margin character data
• partially collected lines
• input traps
• drawing and fill colours

142 The GNU Troff Manual

These environments may be given arbitrary names (see Section 5.5 [Iden-
tifiers], page 54, for more info). Old versions of troff only had environments
named ‘0’, ‘1’, and ‘2’.

Request.ev [env]
Register\n[.ev]

Switch to another environment. The argument env is the name of the
environment to switch to. With no argument, gtroff switches back to
the previous environment. There is no limit on the number of named
environments; they are created the first time that they are referenced.
The .ev read-only register contains the name or number of the current
environment. This is a string-valued register.
Note that a call to ev (with argument) pushes the previously active en-
vironment onto a stack. If, say, environments ‘foo’, ‘bar’, and ‘zap’ are
called (in that order), the first ev request without parameter switches
back to environment ‘bar’ (which is popped off the stack), and a second
call switches back to environment ‘foo’.
Here is an example:

.ev footnote-env

.fam N

.ps 6

.vs 8

.ll -.5i

.ev

...

.ev footnote-env
\(dg Note the large, friendly letters.
.ev

Request.evc env
Copy the environment env into the current environment.
The following environment data is not copied:
• Partially filled lines.
• The status whether the previous line was interrupted.
• The number of lines still to center, or to right-justify, or to underline

(with or without underlined spaces); they are set to zero.
• The status whether a temporary indent is active.
• Input traps and its associated data.
• Line numbering mode is disabled; it can be reactivated with ‘.nm +0’.
• The number of consecutive hyphenated lines (set to zero).

Chapter 5: gtroff Reference 143

Register\n[.cht]
Register\n[.cdp]
Register\n[.csk]

The \n[.cht] register contains the maximum extent (above the baseline)
of the last glyph added to the current environment.
The \n[.cdp] register contains the maximum extent (below the baseline)
of the last glyph added to the current environment.
The \n[.csk] register contains the skew (how far to the right of the
glyph’s center that gtroff shold place an accent) of the last glyph added
to the current environment.

5.28 Suppressing output

Escape\Onum
Disable or enable output depending on the value of num:

‘\O0’ Disable any glyphs from being emitted to the device driver,
provided that the escape occurs at the outer level (see \O[3]
and \O[4]). Motion is not suppressed so effectively \O[0]
means pen up.

‘\O1’ Enable output of glyphs, provided that the escape occurs at
the outer level.

\O0 and \O1 also reset the four registers ‘opminx’, ‘opminy’, ‘opmaxx’,
and ‘opmaxy’ to −1. See E [Register Index], page 205. These four reg-
isters mark the top left and bottom right hand corners of a box which
encompasses all written glyphs.
For example the input text:

Hello \O[0]world \O[1]this is a test.
produces the following output:

Hello this is a test.

‘\O2’ Provided that the escape occurs at the outer level, enable
output of glyphs and also write out to stderr the page num-
ber and four registers encompassing the glyphs previously
written since the last call to \O.

‘\O3’ Begin a nesting level. At start-up, gtroff is at outer level.

‘\O4’ End a nesting level.

‘\O[5Pfilename]’
This escape is grohtml specific. Provided that this escape oc-
curs at the outer nesting level write the filename to stderr.
The position of the image, P, must be specified and must be
one of l, r, c, or i (left, right, centered, inline). filename will
be associated with the production of the next inline image.

144 The GNU Troff Manual

5.29 Colors

Request.color [n]
Register\n[.color]

If n is missing or non-zero, activate colors (this is the default); otherwise,
turn it off.
The read-only number register .color is 1 if colors are active,
0 otherwise.
Internally, color sets a global flag; it does not produce a token. Similar
to the cp request, you should use it at the beginning of your document
to control color output.
Colors can be also turned off with the ‘-c’ command line option.

Request.defcolor ident scheme color components
Define color with name ident. scheme can be one of the following val-
ues: rgb (three components), cym (three components), cmyk (four com-
ponents), and gray or grey (one component).
Color components can be given either as a hexadecimal string or as posi-
tive decimal integers in the range 0–65535. A hexadecimal string contains
all color components concatenated. It must start with either # or ##; the
former specifies hex values in the range 0–255 (which are internally mul-
tiplied by 257), the latter in the range 0–65535. Examples: #FFC0CB
(pink), ##ffff0000ffff (magenta). The default color name value is
device-specific (usually black). It is possible that the default color for
\m and \M is not identical.
A new scaling indicator f has been introduced which multiplies its value
by 65536; this makes it convenient to specify color components as fractions
in the range 0 to 1 (1f equals 65536u). Example:

.defcolor darkgreen rgb 0.1f 0.5f 0.2f

Note that f is the default scaling indicator for the defcolor request, thus
the above statement is equivalent to

.defcolor darkgreen rgb 0.1 0.5 0.2

Escape\mc
Escape\m(co
Escape\m[color]

Set drawing color. The following example shows how to turn the next
four words red.

\m[red]these are in red\m[] and these words are in black.

The escape \m[] returns to the previous color.
The drawing color is associated with the current environment (see Sec-
tion 5.27 [Environments], page 141).

Chapter 5: gtroff Reference 145

Note that \m doesn’t produce an input token in gtroff. As a conse-
quence, it can be used in requests like mc (which expects a single character
as an argument) to change the color on the fly:

.mc \m[red]x\m[]

Escape\Mc
Escape\M(co
Escape\M[color]

Set background color for filled objects drawn with the \D’...’ com-
mands.
A red ellipse can be created with the following code:

\M[red]\h’0.5i’\D’E 2i 1i’\M[]
The escape \M[] returns to the previous fill color.
The fill color is associated with the current environment (see Section 5.27
[Environments], page 141).
Note that \M doesn’t produce an input token in gtroff.

5.30 I/O

gtroff has several requests for including files:

Request.so file
Read in the specified file and includes it in place of the so request. This is
quite useful for large documents, e.g. keeping each chapter in a separate
file. See Section 6.7 [gsoelim], page 163, for more information.
Since gtroff replaces the so request with the contents of file, it makes a
difference whether the data is terminated with a newline or not: Assuming
that file ‘xxx’ contains the word ‘foo’ without a final newline, this

This is
.so xxx
bar

yields ‘This is foobar’.

Request.pso command
Read the standard output from the specified command and includes it in
place of the pso request.
This request causes an error if used in safer mode (which is the default).
Use groff’s or troff’s ‘-U’ option to activate unsafe mode.
The comment regarding a final newline for the so request is valid for pso
also.

Request.mso file
Identical to the so request except that gtroff searches for the specified
file in the same directories as macro files for the the ‘-m’ command line

146 The GNU Troff Manual

option. If the file name to be included has the form ‘name.tmac’ and it
isn’t found, mso tries to include ‘tmac.name’ and vice versa.

Request.trf file
Request.cf file

Transparently output the contents of file. Each line is output as if it
were preceded by \!; however, the lines are not subject to copy mode
interpretation. If the file does not end with a newline, then a newline
is added (trf only). For example, to define a macro x containing the
contents of file ‘f’, use

.di x

.trf f

.di

Both trf and cf, when used in a diversion, embeds an object in the
diversion which, when reread, causes the contents of file to be transpar-
ently copied through to the output. In unix troff, the contents of file
is immediately copied through to the output regardless of whether there
is a current diversion; this behaviour is so anomalous that it must be
considered a bug.
While cf copies the contents of file completely unprocessed, trf disallows
characters such as NUL that are not valid gtroff input characters (see
Section 5.5 [Identifiers], page 54).
Both requests cause a line break.

Request.nx [file]
Force gtroff to continue processing of the file specified as an argument.
If no argument is given, immediately jump to the end of file.

Request.rd [prompt [arg1 arg2 . . .]]
Read from standard input, and include what is read as though it were
part of the input file. Text is read until a blank line is encountered.
If standard input is a TTY input device (keyboard), write prompt to
standard error, followed by a colon (or send BEL for a beep if no argument
is given).
Arguments after prompt are available for the input. For example, the
line

.rd data foo bar

with the input ‘This is \$2.’ prints
This is bar.

Using the nx and rd requests, it is easy to set up form letters. The form
letter template is constructed like this, putting the following lines into a file
called ‘repeat.let’:

Chapter 5: gtroff Reference 147

.ce
*(td
.sp 2
.nf
.rd
.sp
.rd
.fi
Body of letter.
.bp
.nx repeat.let

When this is run, a file containing the following lines should be redirected
in. Note that requests included in this file are executed as though they were
part of the form letter. The last block of input is the ex request which tells
groff to stop processing. If this was not there, groff would not know when
to stop.

Trent A. Fisher
708 NW 19th Av., #202
Portland, OR 97209

Dear Trent,

Len Adollar
4315 Sierra Vista
San Diego, CA 92103

Dear Mr. Adollar,

.ex

Request.pi pipe
Pipe the output of gtroff to the shell command(s) specified by pipe.
This request must occur before gtroff has a chance to print anything.
pi causes an error if used in safer mode (which is the default). Use
groff’s or troff’s ‘-U’ option to activate unsafe mode.
Multiple calls to pi are allowed, acting as a chain. For example,

.pi foo

.pi bar

...

is the same as ‘.pi foo | bar’.
Note that the intermediate output format of gtroff is piped to the spec-
ified commands. Consequently, calling groff without the ‘-Z’ option
normally causes a fatal error.

148 The GNU Troff Manual

Request.sy cmds
Register\n[systat]

Execute the shell command(s) specified by cmds. The output is not saved
anyplace, so it is up to the user to do so.
This request causes an error if used in safer mode (which is the default).
Use groff’s or troff’s ‘-U’ option to activate unsafe mode.
For example, the following code fragment introduces the current time into
a document:

.sy perl -e ’printf ".nr H %d\\n.nr M %d\\n.nr S %d\\n",\
(localtime(time))[2,1,0]’ > /tmp/x\n[$$]

.so /tmp/x\n[$$]

.sy rm /tmp/x\n[$$]
\nH:\nM:\nS

Note that this works by having the perl script (run by sy) print out the
nr requests which set the number registers H, M, and S, and then reads
those commands in with the so request.
For most practical purposes, the number registers seconds, minutes, and
hours which are initialized at start-up of gtroff should be sufficient. Use
the af request to get a formatted output:

.af hours 00

.af minutes 00

.af seconds 00
\n[hours]:\n[minutes]:\n[seconds]

The systat read-write number register contains the return value of the
system() function executed by the last sy request.

Request.open stream file
Request.opena stream file

Open the specified file for writing and associates the specified stream with
it.
The opena request is like open, but if the file exists, append to it instead
of truncating it.
Both open and opena cause an error if used in safer mode (which is the
default). Use groff’s or troff’s ‘-U’ option to activate unsafe mode.

Request.write stream data
Request.writec stream data

Write to the file associated with the specified stream. The stream must
previously have been the subject of an open request. The remainder of
the line is interpreted as the ds request reads its second argument: A
leading ‘"’ is stripped, and it is read in copy-in mode.
The writec request is like write, but only write appends a newline to
the data.

Chapter 5: gtroff Reference 149

Request.writem stream xx
Write the contents of the macro or string xx to the file associated with
the specified stream.
xx is read in copy mode, i.e., already formatted elements are ignored.
Consequently, diversions must be unformatted with the asciify request
before calling writem. Usually, this means a loss of information.

Request.close stream
Close the specified stream; the stream is no longer an acceptable argument
to the write request.
Here a simple macro to write an index entry.

.open idx test.idx

.

.de IX

. write idx \\n[%] \\$*

..

.

.IX test entry

.

.close idx

Escape\Ve
Escape\V(ev
Escape\V[env]

Interpolate the contents of the specified environment variable env (one-
character name e, two-character name ev) as returned by the function
getenv. \V is interpreted in copy-in mode.

5.31 Postprocessor Access

There are two escapes which give information directly to the postproces-
sor. This is particularly useful for embedding PostScript into the final
document.

Escape\X’xxx’
Embeds its argument into the gtroff output preceded with ‘x X’.
The escapes \&, \), \%, and \: are ignored within \X, ‘\ ’ and \~ are
converted to single space characters. All other escapes (except \\ which
produces a backslash) cause an error.
If the ‘use_charnames_in_special’ keyword is set in the ‘DESC’ file, spe-
cial characters no longer cause an error; the name xx is represented as
‘\(xx)’ in the ‘x X’ output command. Additionally, the backslash is rep-
resented as \\.
‘use_charnames_in_special’ is currently used by grohtml only.

150 The GNU Troff Manual

Escape\Yn
Escape\Y(nm
Escape\Y[name]

This is approximately equivalent to ‘\X’*[name]’’ (one-character
name n, two-character name nm). However, the contents of the string or
macro name are not interpreted; also it is permitted for name to have
been defined as a macro and thus contain newlines (it is not permitted
for the argument to \X to contain newlines). The inclusion of newlines
requires an extension to the unix troff output format, and confuses
drivers that do not know about this extension (see Section 8.1.2.4
[Device Control Commands], page 175).

See Chapter 7 [Output Devices], page 165.

5.32 Miscellaneous

This section documents parts of gtroff which cannot (yet) be categorized
elsewhere in this manual.

Request.nm [start [inc [space [indent]]]]
Print line numbers. start is the line number of the next output line.
inc indicates which line numbers are printed. For example, the value 5
means to emit only line numbers which are multiples of 5; this defaults
to 1. space is the space to be left between the number and the text; this
defaults to one digit space. The fourth argument is the indentation of
the line numbers, defaulting to zero. Both space and indent are given
as multiples of digit spaces; they can be negative also. Without any
arguments, line numbers are turned off.
gtroff reserves three digit spaces for the line number (which is printed
right-justified) plus the amount given by indent; the output lines are con-
catenated to the line numbers, separated by space, and without reducing
the line length. Depending on the value of the horizontal page offset (as
set with the po request), line numbers which are longer than the reserved
space stick out to the left, or the whole line is moved to the right.
Parameters corresponding to missing arguments are not changed; any
non-digit argument (to be more precise, any argument starting with a
character valid as a delimiter for identifiers) is also treated as missing.
If line numbering has been disabled with a call to nm without an argu-
ment, it can be reactivated with ‘.nm +0’, using the previously active line
numbering parameters.
The parameters of nm are associated with the current environment (see
Section 5.27 [Environments], page 141). The current output line number
is available in the number register ln.

Chapter 5: gtroff Reference 151

.po 1m

.ll 2i
This test shows how line numbering works with groff.
.nm 999
This test shows how line numbering works with groff.
.br
.nm xxx 3 2
.ll -\w’0’u
This test shows how line numbering works with groff.
.nn 2
This test shows how line numbering works with groff.

And here the result:
This test shows how
line numbering works
999 with groff. This

1000 test shows how line
1001 numbering works with
1002 groff.

This test shows how
line numbering

works with groff.
This test shows how

1005 line numbering
works with groff.

Request.nn [skip]
Temporarily turn off line numbering. The argument is the number of
lines not to be numbered; this defaults to 1.

Request.mc glyph [dist]
Print a margin character to the right of the text.15 The first argument is
the glyph to be printed. The second argument is the distance away from
the right margin. If missing, the previously set value is used; default
is 10 pt). For text lines that are too long (that is, longer than the text
length plus dist), the margin character is directly appended to the lines.
With no arguments the margin character is turned off. If this occurs
before a break, no margin character is printed.
For empty lines and lines produced by the tl request no margin character
is emitted.
The margin character is associated with the current environment (see
Section 5.27 [Environments], page 141).

15 Margin character is a misnomer since it is an output glyph.

152 The GNU Troff Manual

This is quite useful for indicating text that has changed, and, in fact,
there are programs available for doing this (they are called nrchbar and
changebar and can be found in any ‘comp.sources.unix’ archive.

.ll 3i

.mc |
This paragraph is highlighted with a margin
character.
.sp
Note that vertical space isn’t marked.
.br
\&
.br
But we can fake it with ‘\&’.

Result:
This paragraph is highlighted |
with a margin character. |

Note that vertical space isn’t |
marked. |

|
But we can fake it with ‘\&’. |

Request.psbb filename
Register\n[llx]
Register\n[lly]
Register\n[urx]
Register\n[ury]

Retrieve the bounding box of the PostScript image found in filename. The
file must conform to Adobe’s Document Structuring Conventions (DSC);
the command searches for a %%BoundingBox comment and extracts the
bounding box values into the number registers llx, lly, urx, and ury.
If an error occurs (for example, psbb cannot find the %%BoundingBox
comment), it sets the four number registers to zero.

5.33 gtroff Internals

gtroff processes input in three steps. One or more input characters are
converted to an input token.16 Then, one or more input tokens are converted
to an output node. Finally, output nodes are converted to the intermediate
output language understood by all output devices.

Actually, before step one happens, gtroff converts certain escape se-
quences into reserved input characters (not accessible by the user); such

16 Except the escapes \f, \F, \H, \m, \M, \R, \s, and \S which are processed immediately
if not in copy-in mode.

Chapter 5: gtroff Reference 153

reserved characters are used for other internal processing also – this is the
very reason why not all characters are valid input. See Section 5.5 [Identi-
fiers], page 54, for more on this topic.

For example, the input string ‘fi\[:u]’ is converted into a character
token ‘f’, a character token ‘i’, and a special token ‘:u’ (representing
u umlaut). Later on, the character tokens ‘f’ and ‘i’ are merged to a single
output node representing the ligature glyph ‘fi’ (provided the current font
has a glyph for this ligature); the same happens with ‘:u’. All output glyph
nodes are ‘processed’ which means that they are invariably associated with
a given font, font size, advance width, etc. During the formatting process,
gtroff itself adds various nodes to control the data flow.

Macros, diversions, and strings collect elements in two chained lists: a
list of input tokens which have been passed unprocessed, and a list of output
nodes. Consider the following the diversion.

.di xxx
a
\!b
c
.br
.di

It contains these elements.
node list token list element number

line start node — 1
glyph node a — 2
word space node — 3
— b 4
— \n 5
glyph node c — 6
vertical size node — 7
vertical size node — 8
— \n 9
Elements 1, 7, and 8 are inserted by gtroff; the latter two (which are
always present) specify the vertical extent of the last line, possibly modified
by \x. The br request finishes the current partial line, inserting a newline
input token which is subsequently converted to a space when the diversion
is reread. Note that the word space node has a fixed width which isn’t
stretchable anymore. To convert horizontal space nodes back to input tokens,
use the unformat request.

Macros only contain elements in the token list (and the node list is
empty); diversions and strings can contain elements in both lists.

Note that the chop request simply reduces the number of elements in a
macro, string, or diversion by one. Exceptions are compatibility save and
compatibility ignore input tokens which are ignored. The substring request
also ignores those input tokens.

154 The GNU Troff Manual

Some requests like tr or cflags work on glyph identifiers only; this
means that the associated glyph can be changed without destroying this
association. This can be very helpful for substituting glyphs. In the following
example, we assume that glyph ‘foo’ isn’t available by default, so we provide
a substitution using the fchar request and map it to input character ‘x’.

.fchar \[foo] foo

.tr x \[foo]

Now let us assume that we install an additional special font ‘bar’ which has
glyph ‘foo’.

.special bar

.rchar \[foo]

Since glyphs defined with fchar are searched before glyphs in special fonts,
we must call rchar to remove the definition of the fallback glyph. Anyway,
the translation is still active; ‘x’ now maps to the real glyph ‘foo’.

5.34 Debugging

gtroff is not easy to debug, but there are some useful features and
strategies for debugging.

Request.lf line filename
Change the line number and the file name gtroff shall use for error and
warning messages. line is the input line number of the next line.
Without argument, the request is ignored.
This is a debugging aid for documents which are split into many files,
then put together with soelim and other preprocessors. Usually, it isn’t
invoked manually.

Request.tm string
Request.tm1 string
Request.tmc string

Send string to the standard error output; this is very useful for printing
debugging messages among other things.
string is read in copy mode.
The tm request ignores leading spaces of string ; tm1 handles its argument
similar to the ds request: a leading double quote in string is stripped to
allow initial blanks.
The tmc request is similar to tm1 but does not append a newline (as is
done in tm and tm1).

Request.ab [string]
Similar to the tm request, except that it causes gtroff to stop processing.
With no argument it prints ‘User Abort.’ to standard error.

Chapter 5: gtroff Reference 155

Request.ex
The ex request also causes gtroff to stop processing; see also Section 5.30
[I/O], page 145.

When doing something involved it is useful to leave the debugging state-
ments in the code and have them turned on by a command line flag.

.if \n(DB .tm debugging output

To activate these statements say
groff -rDB=1 file

If it is known in advance that there will be many errors and no useful
output, gtroff can be forced to suppress formatted output with the ‘-z’
flag.

Request.pm
Print the entire symbol table on stderr. Names of all defined macros,
strings, and diversions are print together with their size in bytes. Since
gtroff sometimes adds nodes by itself, the returned size can be larger
than expected.
This request differs from unix troff: gtroff reports the sizes of diver-
sions, ignores an additional argument to print only the total of the sizes,
and the size isn’t returned in blocks of 128 characters.

Request.pnr
Print the names and contents of all currently defined number registers on
stderr.

Request.ptr
Print the names and positions of all traps (not including input line traps
and diversion traps) on stderr. Empty slots in the page trap list are
printed as well, because they can affect the priority of subsequently
planted traps.

Request.fl
Instruct gtroff to flush its output immediately. The intent is for inter-
active use, but this behaviour is currently not implemented in gtroff.
Contrary to unix troff, TTY output is sent to a device driver also
(grotty), making it non-trivial to communicate interactively.
This request causes a line break.

Request.backtrace
Print a backtrace of the input stack to the standard error stream.
Consider the following in file ‘test’:

156 The GNU Troff Manual

.de xxx

. backtrace

..

.de yyy

. xxx

..

.

.yyy

On execution, gtroff prints the following:
test:2: backtrace: macro ‘xxx’
test:5: backtrace: macro ‘yyy’
test:8: backtrace: file ‘test’

The option ‘-b’ of gtroff internally calls a variant of this request on each
error and warning.

Register\n[slimit]
Use the slimit number register to set the maximum number of objects
on the input stack. If slimit is less than or equal to 0, there is no limit
set. With no limit, a buggy recursive macro can exhaust virtual memory.
The default value is 1000; this is a compile-time constant.

Request.warnscale si
Set the scaling indicator used in warnings to si. Valid values for si are
‘u’, ‘i’, ‘c’, ‘p’, and ‘P’. At startup, it is set to ‘i’.

Request.spreadwarn [limit]
Make gtroff emit a warning if the additional space inserted for each
space between words in an output line is larger or equal to limit. A
negative value is changed to zero; no argument toggles the warning on
and off without changing limit. The default scaling indicator is ‘m’. At
startup, spreadwarn is deactivated, and limit is set to 3 m.
For example,

.spreadwarn 0.2m

will cause a warning if gtroff must add 0.2 m or more for each interword
space in a line.
This request is active only if text is justified to both margins (using
‘.ad b’).

gtroff has command line options for printing out more warnings (‘-w’)
and for printing backtraces (‘-b’) when a warning or an error occurs. The
most verbose level of warnings is ‘-ww’.

Chapter 5: gtroff Reference 157

Request.warn [flags]
Register\n[.warn]

Control the level of warnings checked for. The flags are the sum of the
numbers associated with each warning that is to be enabled; all other
warnings are disabled. The number associated with each warning is listed
below. For example, .warn 0 disables all warnings, and .warn 1 disables
all warnings except that about missing glyphs. If no argument is given,
all warnings are enabled.
The read-only number register .warn contains the current warning level.

5.34.1 Warnings

The warnings that can be given to gtroff are divided into the following
categories. The name associated with each warning is used by the ‘-w’ and
‘-W’ options; the number is used by the warn request and by the .warn
register.

‘char’
‘1’ Non-existent glyphs.17 This is enabled by default.

‘number’
‘2’ Invalid numeric expressions. This is enabled by default. See

Section 5.4 [Expressions], page 52.

‘break’
‘4’ In fill mode, lines which could not be broken so that their length

was less than the line length. This is enabled by default.

‘delim’
‘8’ Missing or mismatched closing delimiters.

‘el’
‘16’ Use of the el request with no matching ie request. See Sec-

tion 5.21.2 [if-else], page 118.

‘scale’
‘32’ Meaningless scaling indicators.

‘range’
‘64’ Out of range arguments.

‘syntax’
‘128’ Dubious syntax in numeric expressions.

‘di’
‘256’ Use of di or da without an argument when there is no current

diversion.

17 char is a misnomer since it reports missing glyphs – there aren’t missing input char-
acters, only invalid ones.

158 The GNU Troff Manual

‘mac’
‘512’ Use of undefined strings, macros and diversions. When an unde-

fined string, macro, or diversion is used, that string is automat-
ically defined as empty. So, in most cases, at most one warning
is given for each name.

‘reg’
‘1024’ Use of undefined number registers. When an undefined number

register is used, that register is automatically defined to have a
value of 0. So, in most cases, at most one warning is given for
use of a particular name.

‘tab’
‘2048’ Use of a tab character where a number was expected.

‘right-brace’
‘4096’ Use of \} where a number was expected.

‘missing’
‘8192’ Requests that are missing non-optional arguments.

‘input’
‘16384’ Invalid input characters.

‘escape’
‘32768’ Unrecognized escape sequences. When an unrecognized escape

sequence \X is encountered, the escape character is ignored, and
X is printed.

‘space’
‘65536’ Missing space between a request or macro and its argument.

This warning is given when an undefined name longer than two
characters is encountered, and the first two characters of the
name make a defined name. The request or macro is not in-
voked. When this warning is given, no macro is automatically
defined. This is enabled by default. This warning never occurs
in compatibility mode.

‘font’
‘131072’ Non-existent fonts. This is enabled by default.

‘ig’
‘262144’ Invalid escapes in text ignored with the ig request. These are

conditions that are errors when they do not occur in ignored
text.

‘color’
‘524288’ Color related warnings.

‘all’ All warnings except ‘di’, ‘mac’ and ‘reg’. It is intended that
this covers all warnings that are useful with traditional macro
packages.

Chapter 5: gtroff Reference 159

‘w’ All warnings.

5.35 Implementation Differences

GNU troff has a number of features which cause incompatibilities with
documents written with old versions of troff.

Long names cause some incompatibilities. unix troff interprets
.dsabcd

as defining a string ‘ab’ with contents ‘cd’. Normally, GNU troff interprets
this as a call of a macro named dsabcd. Also unix troff interprets *[or
\n[as references to a string or number register called ‘[’. In GNU troff,
however, this is normally interpreted as the start of a long name. In com-
patibility mode GNU troff interprets long names in the traditional way
(which means that they are not recognized as names).

Request.cp [n]
Request.do cmd
Register\n[.C]

If n is missing or non-zero, turn on compatibility mode; otherwise, turn
it off.
The read-only number register .C is 1 if compatibility mode is on,
0 otherwise.
Compatibility mode can be also turned on with the ‘-C’ command line
option.
The do request turns off compatibility mode while executing its arguments
as a gtroff command.

.do fam T

executes the fam request when compatibility mode is enabled.
gtroff restores the previous compatibility setting before interpreting any
files sourced by the cmd.

Two other features are controlled by ‘-C’. If not in compatibility mode,
GNU troff preserves the input level in delimited arguments:

.ds xx ’
\w’abc*(xxdef’

In compatibility mode, the string ‘72def’’ is returned; without ‘-C’ the
resulting string is ‘168’ (assuming a TTY output device).

Finally, the escapes \f, \H, \m, \M, \R, \s, and \S are transparent for
recognizing the beginning of a line only in compatibility mode (this is a
rather obscure feature). For example, the code

160 The GNU Troff Manual

.de xx
Hallo!
..
\fB.xx\fP

prints ‘Hallo!’ in bold face if in compatibility mode, and ‘.xx’ in bold
face otherwise.

GNU troff does not allow the use of the escape sequences \|, \^, \&,
\{, \}, \〈SP〉, \’, \‘, \-, _, \!, \%, and \c in names of strings, macros,
diversions, number registers, fonts or environments; unix troff does. The
\A escape sequence (see Section 5.5 [Identifiers], page 54) may be helpful in
avoiding use of these escape sequences in names.

Fractional point sizes cause one noteworthy incompatibility. In unix
troff the ps request ignores scale indicators and thus

.ps 10u

sets the point size to 10 points, whereas in GNU troff it sets the point size
to 10 scaled points. See Section 5.19.2 [Fractional Type Sizes], page 111, for
more information.

In GNU troff there is a fundamental difference between (unformatted)
input characters and (formatted) output glyphs. Everything that affects how
a glyph is output is stored with the glyph node; once a glyph node has been
constructed it is unaffected by any subsequent requests that are executed,
including bd, cs, tkf, tr, or fp requests. Normally glyphs are constructed
from input characters at the moment immediately before the glyph is added
to the current output line. Macros, diversions and strings are all, in fact, the
same type of object; they contain lists of input characters and glyph nodes
in any combination. A glyph node does not behave like an input character
for the purposes of macro processing; it does not inherit any of the special
properties that the input character from which it was constructed might
have had. For example,

.di x
\\\\
.br
.di
.x

prints ‘\\’ in GNU troff; each pair of input backslashes is turned into one
output backslash and the resulting output backslashes are not interpreted
as escape characters when they are reread. unix troff would interpret
them as escape characters when they were reread and would end up printing
one ‘\’. The correct way to obtain a printable backslash is to use the \e
escape sequence: This always prints a single instance of the current escape
character, regardless of whether or not it is used in a diversion; it also

Chapter 5: gtroff Reference 161

works in both GNU troff and unix troff.18 To store, for some reason, an
escape sequence in a diversion that will be interpreted when the diversion is
reread, either use the traditional \! transparent output facility, or, if this is
unsuitable, the new \? escape sequence.

See Section 5.26 [Diversions], page 137, and Section 5.33 [Gtroff Inter-
nals], page 152, for more information.

18 To be completely independent of the current escape character, use \(rs which repre-
sents a reverse solidus (backslash) glyph.

162 The GNU Troff Manual

Chapter 6: Preprocessors 163

6 Preprocessors

This chapter describes all preprocessors that come with groff or which
are freely available.

6.1 geqn

6.1.1 Invoking geqn

6.2 gtbl

6.2.1 Invoking gtbl

6.3 gpic

6.3.1 Invoking gpic

6.4 ggrn

6.4.1 Invoking ggrn

6.5 grap

A free implementation of grap, written by Ted Faber, is available as an
extra package from the following address:

http://www.lunabase.org/~faber/Vault/software/grap/

6.6 grefer

6.6.1 Invoking grefer

6.7 gsoelim

6.7.1 Invoking gsoelim

164 The GNU Troff Manual

Chapter 7: Output Devices 165

7 Output Devices

7.1 Special Characters

See Section 8.2 [Font Files], page 180.

7.2 grotty

7.2.1 Invoking grotty

7.3 grops

7.3.1 Invoking grops

7.3.2 Embedding PostScript

7.4 grodvi

7.4.1 Invoking grodvi

7.5 grolj4

7.5.1 Invoking grolj4

7.6 grolbp

7.6.1 Invoking grolbp

7.7 grohtml

7.7.1 Invoking grohtml

166 The GNU Troff Manual

7.7.2 grohtml specific registers and strings

Register\n[ps4html]
String*[www-image-template]

The registers ps4html and www-image-template are defined by the pre-
grohtml preprocessor. pre-grohtml reads in the troff input, marks up
the inline equations and passes the result firstly to

troff -Tps -rps4html=1 -dwww-image-template=template

and secondly to
troff -Thtml

The PostScript device is used to create all the image files, and the register
ps4html enables the macro sets to ignore floating keeps, footers, and
headings.
The register www-image-template is set to the user specified template
name or the default name.

7.8 gxditview

7.8.1 Invoking gxditview

Chapter 8: File formats 167

8 File formats

All files read and written by gtroff are text files. The following two
sections describe their format.

8.1 gtroff Output

This section describes the intermediate output format of GNU troff.
This output is produced by a run of gtroff before it is fed into a device
postprocessor program.

As groff is a wrapper program around gtroff that automatically calls a
postprocessor, this output does not show up normally. This is why it is called
intermediate. groff provides the option ‘-Z’ to inhibit postprocessing, such
that the produced intermediate output is sent to standard output just like
calling gtroff manually.

Here, the term troff output describes what is output by gtroff, while
intermediate output refers to the language that is accepted by the parser
that prepares this output for the postprocessors. This parser is smarter on
whitespace and implements obsolete elements for compatibility, otherwise
both formats are the same.1

The main purpose of the intermediate output concept is to facilitate
the development of postprocessors by providing a common programming
interface for all devices. It has a language of its own that is completely
different from the gtroff language. While the gtroff language is a high-
level programming language for text processing, the intermediate output
language is a kind of low-level assembler language by specifying all positions
on the page for writing and drawing.

The intermediate output produced by gtroff is fairly readable, while
output from at&t troff is rather hard to understand because of strange
habits that are still supported, but not used any longer by gtroff.

8.1.1 Language Concepts

During the run of gtroff, the input data is cracked down to the informa-
tion on what has to be printed at what position on the intended device. So
the language of the intermediate output format can be quite small. Its only
elements are commands with and without arguments. In this section, the
term command always refers to the intermediate output language, and never
to the gtroff language used for document formatting. There are commands
for positioning and text writing, for drawing, and for device controlling.

1 The parser and postprocessor for intermediate output can be found in the file
‘groff-source-dir/src/libs/libdriver/input.cc’.

168 The GNU Troff Manual

8.1.1.1 Separation

at&t troff output has strange requirements on whitespace. The gtroff
output parser, however, is smart about whitespace by making it maximally
optional. The whitespace characters, i.e., the tab, space, and newline char-
acters, always have a syntactical meaning. They are never printable because
spacing within the output is always done by positioning commands.

Any sequence of space or tab characters is treated as a single syntactical
space. It separates commands and arguments, but is only required when
there would occur a clashing between the command code and the arguments
without the space. Most often, this happens when variable-length command
names, arguments, argument lists, or command clusters meet. Commands
and arguments with a known, fixed length need not be separated by syntac-
tical space.

A line break is a syntactical element, too. Every command argument
can be followed by whitespace, a comment, or a newline character. Thus a
syntactical line break is defined to consist of optional syntactical space that
is optionally followed by a comment, and a newline character.

The normal commands, those for positioning and text, consist of a single
letter taking a fixed number of arguments. For historical reasons, the parser
allows to stack such commands on the same line, but fortunately, in gtroff’s
intermediate output, every command with at least one argument is followed
by a line break, thus providing excellent readability.

The other commands – those for drawing and device controlling – have
a more complicated structure; some recognize long command names, and
some take a variable number of arguments. So all ‘D’ and ‘x’ commands
were designed to request a syntactical line break after their last argument.
Only one command, ‘x X’, has an argument that can stretch over several
lines; all other commands must have all of their arguments on the same line
as the command, i.e., the arguments may not be splitted by a line break.

Empty lines (these are lines containing only space and/or a comment),
can occur everywhere. They are just ignored.

8.1.1.2 Argument Units

Some commands take integer arguments that are assumed to represent
values in a measurement unit, but the letter for the corresponding scale indi-
cator is not written with the output command arguments. Most commands
assume the scale indicator ‘u’, the basic unit of the device, some use ‘z’, the
scaled point unit of the device, while others, such as the color commands,
expect plain integers.

Note that single characters can have the eighth bit set, as can the names
of fonts and special characters. The names of characters and fonts can be
of arbitrary length. A character that is to be printed will always be in the
current font.

Chapter 8: File formats 169

A string argument is always terminated by the next whitespace character
(space, tab, or newline); an embedded ‘#’ character is regarded as part of
the argument, not as the beginning of a comment command. An integer
argument is already terminated by the next non-digit character, which then
is regarded as the first character of the next argument or command.

8.1.1.3 Document Parts

A correct intermediate output document consists of two parts, the pro-
logue and the body.

The task of the prologue is to set the general device parameters using
three exactly specified commands. gtroff’s prologue is guaranteed to consist
of the following three lines (in that order):

x T device
x res n h v
x init

with the arguments set as outlined in Section 8.1.2.4 [Device Control Com-
mands], page 175. Note that the parser for the intermediate output format
is able to swallow additional whitespace and comments as well even in the
prologue.

The body is the main section for processing the document data. Syntac-
tically, it is a sequence of any commands different from the ones used in the
prologue. Processing is terminated as soon as the first ‘x stop’ command is
encountered; the last line of any gtroff intermediate output always contains
such a command.

Semantically, the body is page oriented. A new page is started by a ‘p’
command. Positioning, writing, and drawing commands are always done
within the current page, so they cannot occur before the first ‘p’ command.
Absolute positioning (by the ‘H’ and ‘V’ commands) is done relative to the
current page; all other positioning is done relative to the current location
within this page.

8.1.2 Command Reference

This section describes all intermediate output commands, both from
at&t troff as well as the gtroff extensions.

8.1.2.1 Comment Command

#anything<end of line>
A comment. Ignore any characters from the ‘#’ character up to
the next newline character.
This command is the only possibility for commenting in the in-
termediate output. Each comment can be preceded by arbitrary

170 The GNU Troff Manual

syntactical space; every command can be terminated by a com-
ment.

8.1.2.2 Simple Commands

The commands in this subsection have a command code consisting of a
single character, taking a fixed number of arguments. Most of them are com-
mands for positioning and text writing. These commands are smart about
whitespace. Optionally, syntactical space can be inserted before, after, and
between the command letter and its arguments. All of these commands are
stackable, i.e., they can be preceded by other simple commands or followed
by arbitrary other commands on the same line. A separating syntactical
space is only necessary when two integer arguments would clash or if the
preceding argument ends with a string argument.

C xxx<whitespace>
Print a special character named xxx. The trailing syntactical
space or line break is necessary to allow glyph names of arbitrary
length. The glyph is printed at the current print position; the
glyph’s size is read from the font file. The print position is not
changed.

c g Print glyph g at the current print position;2 the glyph’s size is
read from the font file. The print position is not changed.

f n Set font to font number n (a non-negative integer).

H n Move right to the absolute vertical position n (a non-negative
integer in basic units ‘u’ relative to left edge of current page.

h n Move n (a non-negative integer) basic units ‘u’ horizontally to
the right. The original unix troff manual allows negative values
for n also, but gtroff doesn’t use this.

m color-scheme [component ...]
Set the color for text (glyphs), line drawing, and the outline
of graphic objects using different color schemes; the analoguous
command for the filling color of graphic objects is ‘DF’. The color
components are specified as integer arguments between 0 and
65536. The number of color components and their meaning vary
for the different color schemes. These commands are generated
by gtroff’s escape sequence \m. No position changing. These
commands are a gtroff extension.

mc cyan magenta yellow
Set color using the CMY color scheme, having the
3 color components cyan, magenta, and yellow.

2 ‘c’ is actually a misnomer since it outputs a glyph.

Chapter 8: File formats 171

md Set color to the default color value (black in most
cases). No component arguments.

mg gray Set color to the shade of gray given by the argument,
an integer between 0 (black) and 65536 (white).

mk cyan magenta yellow black
Set color using the CMYK color scheme, having
the 4 color components cyan, magenta, yellow, and
black.

mr red green blue
Set color using the RGB color scheme, having the
3 color components red, green, and blue.

N n Print glyph with index n (a non-negative integer) of the current
font. This command is a gtroff extension.

n b a Inform the device about a line break, but no positioning is done
by this command. In at&t troff, the integer arguments b
and a informed about the space before and after the current line
to make the intermediate output more human readable without
performing any action. In groff, they are just ignored, but they
must be provided for compatibility reasons.

p n Begin a new page in the outprint. The page number is set to n.
This page is completely independent of pages formerly processed
even if those have the same page number. The vertical position
on the outprint is automatically set to 0. All positioning, writ-
ing, and drawing is always done relative to a page, so a ‘p’
command must be issued before any of these commands.

s n Set point size to n scaled points (this is unit ‘z’). at&t troff
used the unit points (‘p’) instead. See Section 8.1.4 [Output
Language Compatibility], page 180.

t xxx<whitespace>
t xxx dummy-arg<whitespace>

Print a word, i.e., a sequence of characters xxx representing
output glyphs which names are single characters, terminated by
a space character or a line break; an optional second integer
argument is ignored (this allows the formatter to generate an
even number of arguments). The first glyph should be printed
at the current position, the current horizontal position should
then be increased by the width of the first glyph, and so on
for each glyph. The widths of the glyphs are read from the
font file, scaled for the current point size, and rounded to a
multiple of the horizontal resolution. Special characters cannot
be printed using this command (use the ‘C’ command for special
characters). This command is a gtroff extension; it is only used

172 The GNU Troff Manual

for devices whose ‘DESC’ file contains the tcommand keyword (see
Section 8.2.1 [DESC File Format], page 181).

u n xxx<whitespace>
Print word with track kerning. This is the same as the ‘t’ com-
mand except that after printing each glyph, the current horizon-
tal position is increased by the sum of the width of that glyph
and n (an integer in basic units ‘u’). This command is a gtroff
extension; it is only used for devices whose ‘DESC’ file contains
the tcommand keyword (see Section 8.2.1 [DESC File Format],
page 181).

V n Move down to the absolute vertical position n (a non-negative
integer in basic units ‘u’) relative to upper edge of current page.

v n Move n basic units ‘u’ down (n is a non-negative integer). The
original unix troff manual allows negative values for n also, but
gtroff doesn’t use this.

w Informs about a paddable white space to increase readability.
The spacing itself must be performed explicitly by a move com-
mand.

8.1.2.3 Graphics Commands

Each graphics or drawing command in the intermediate output starts with
the letter ‘D’, followed by one or two characters that specify a subcommand;
this is followed by a fixed or variable number of integer arguments that are
separated by a single space character. A ‘D’ command may not be followed
by another command on the same line (apart from a comment), so each ‘D’
command is terminated by a syntactical line break.

gtroff output follows the classical spacing rules (no space between com-
mand and subcommand, all arguments are preceded by a single space char-
acter), but the parser allows optional space between the command letters
and makes the space before the first argument optional. As usual, each space
can be any sequence of tab and space characters.

Some graphics commands can take a variable number of arguments. In
this case, they are integers representing a size measured in basic units ‘u’.
The arguments called h1, h2, . . . , hn stand for horizontal distances where
positive means right, negative left. The arguments called v1, v2, . . . , vn
stand for vertical distances where positive means down, negative up. All
these distances are offsets relative to the current location.

Unless indicated otherwise, each graphics command directly corresponds
to a similar gtroff \D escape sequence. See Section 5.24 [Drawing Requests],
page 129.

Unknown ‘D’ commands are assumed to be device-specific. Its arguments
are parsed as strings; the whole information is then sent to the postprocessor.

Chapter 8: File formats 173

In the following command reference, the syntax element <line break>
means a syntactical line break as defined above.

D~ h1 v1 h2 v2 ... hn vn<line break>
Draw B-spline from current position to offset (h1,v1), then to
offset (h2,v2), if given, etc. up to (hn,vn). This command takes
a variable number of argument pairs; the current position is
moved to the terminal point of the drawn curve.

Da h1 v1 h2 v2<line break>
Draw arc from current position to (h1,v1)+(h2,v2) with center
at (h1,v1); then move the current position to the final point of
the arc.

DC d<line break>
DC d dummy-arg<line break>

Draw a solid circle using the current fill color with diameter d
(integer in basic units ‘u’) with leftmost point at the current po-
sition; then move the current position to the rightmost point of
the circle. An optional second integer argument is ignored (this
allows the formatter to generate an even number of arguments).
This command is a gtroff extension.

Dc d<line break>
Draw circle line with diameter d (integer in basic units ‘u’) with
leftmost point at the current position; then move the current
position to the rightmost point of the circle.

DE h v<line break>
Draw a solid ellipse in the current fill color with a horizontal
diameter of h and a vertical diameter of v (both integers in basic
units ‘u’) with the leftmost point at the current position; then
move to the rightmost point of the ellipse. This command is a
gtroff extension.

De h v<line break>
Draw an outlined ellipse with a horizontal diameter of h and a
vertical diameter of v (both integers in basic units ‘u’) with the
leftmost point at current position; then move to the rightmost
point of the ellipse.

DF color-scheme [component ...]<line break>
Set fill color for solid drawing objects using different color
schemes; the analoguous command for setting the color of text,
line graphics, and the outline of graphic objects is ‘m’. The color
components are specified as integer arguments between 0 and
65536. The number of color components and their meaning vary
for the different color schemes. These commands are generated
by gtroff’s escape sequences \D’F ...’ and \M (with no other

174 The GNU Troff Manual

corresponding graphics commands). No position changing. This
command is a gtroff extension.
DFc cyan magenta yellow<line break>

Set fill color for solid drawing objects using the
CMY color scheme, having the 3 color components
cyan, magenta, and yellow.

DFd<line break>
Set fill color for solid drawing objects to the default
fill color value (black in most cases). No component
arguments.

DFg gray<line break>
Set fill color for solid drawing objects to the shade
of gray given by the argument, an integer between
0 (black) and 65536 (white).

DFk cyan magenta yellow black<line break>
Set fill color for solid drawing objects using the
CMYK color scheme, having the 4 color components
cyan, magenta, yellow, and black.

DFr red green blue<line break>
Set fill color for solid drawing objects using the RGB
color scheme, having the 3 color components red,
green, and blue.

Df n<line break>
The argument n must be an integer in the range −32767 to
32767.
0<=n<=1000

Set the color for filling solid drawing objects to a
shade of gray, where 0 corresponds to solid white,
1000 (the default) to solid black, and values in be-
tween to intermediate shades of gray; this is obso-
leted by command ‘DFg’.

n<0 or n<1000
Set the filling color to the color that is currently be-
ing used for the text and the outline, see command
‘m’. For example, the command sequence

mg 0 0 65536
Df -1

sets all colors to blue.
No position changing. This command is a gtroff extension.

Dl h v<line break>
Draw line from current position to offset (h,v) (integers in basic
units ‘u’); then set current position to the end of the drawn line.

Chapter 8: File formats 175

Dp h1 v1 h2 v2 ... hn vn<line break>
Draw a polygon line from current position to offset (h1,v1), from
there to offset (h2,v2), etc. up to offset (hn,vn), and from there
back to the starting position. For historical reasons, the posi-
tion is changed by adding the sum of all arguments with odd
index to the actual horizontal position and the even ones to the
vertical position. Although this doesn’t make sense it is kept for
compatibility. This command is a gtroff extension.

Dp h1 v1 h2 v2 ... hn vn<line break>
Draw a solid polygon in the current fill color rather than an
outlined polygon, using the same arguments and positioning as
the corresponding ‘Dp’ command. This command is a gtroff
extension.

Dt n<line break>
Set the current line thickness to n (an integer in basic units ‘u’)
if n > 0; if n = 0 select the smallest available line thickness; if
n < 0 set the line thickness proportional to the point size (this
is the default before the first ‘Dt’ command was specified). For
historical reasons, the horizontal position is changed by adding
the argument to the actual horizontal position, while the vertical
position is not changed. Although this doesn’t make sense it is
kept for compatibility. This command is a gtroff extension.

8.1.2.4 Device Control Commands

Each device control command starts with the letter ‘x’, followed by a
space character (optional or arbitrary space or tab in gtroff) and a sub-
command letter or word; each argument (if any) must be preceded by a
syntactical space. All ‘x’ commands are terminated by a syntactical line
break; no device control command can be followed by another command on
the same line (except a comment).

The subcommand is basically a single letter, but to increase readability, it
can be written as a word, i.e., an arbitrary sequence of characters terminated
by the next tab, space, or newline character. All characters of the subcom-
mand word but the first are simply ignored. For example, gtroff outputs
the initialization command ‘x i’ as ‘x init’ and the resolution command
‘x r’ as ‘x res’.

In the following, the syntax element <line break> means a syntactical line
break (see Section 8.1.1.1 [Separation], page 168).

xF name<line break>
The ‘F’ stands for Filename.
Use name as the intended name for the current file in error
reports. This is useful for remembering the original file name
when gtroff uses an internal piping mechanism. The input file

176 The GNU Troff Manual

is not changed by this command. This command is a gtroff
extension.

xf n s<line break>
The ‘f’ stands for font.
Mount font position n (a non-negative integer) with font
named s (a text word). See Section 5.18.3 [Font Positions],
page 98.

xH n<line break>
The ‘H’ stands for Height.
Set glyph height to n (a positive integer in scaled points ‘z’).
at&t troff uses the unit points (‘p’) instead. See Section 8.1.4
[Output Language Compatibility], page 180.

xi<line break>
The ‘i’ stands for init.
Initialize device. This is the third command of the prologue.

xp<line break>
The ‘p’ stands for pause.
Parsed but ignored. The original unix troff manual writes

pause device, can be restarted

xr n h v<line break>
The ‘r’ stands for resolution.
Resolution is n, while h is the minimal horizontal motion, and
v the minimal vertical motion possible with this device; all ar-
guments are positive integers in basic units ‘u’ per inch. This is
the second command of the prologue.

xS n<line break>
The ‘S’ stands for Slant.
Set slant to n (an integer in basic units ‘u’).

xs<line break>
The ‘s’ stands for stop.
Terminates the processing of the current file; issued as the last
command of any intermediate troff output.

xt<line break>
The ‘t’ stands for trailer.
Generate trailer information, if any. In gtroff, this is actually
just ignored.

xT xxx<line break>
The ‘T’ stands for Typesetter.
Set name of device to word xxx, a sequence of characters ended
by the next white space character. The possible device names

Chapter 8: File formats 177

coincide with those from the groff ‘-T’ option. This is the first
command of the prologue.

xu n<line break>
The ‘u’ stands for underline.

Configure underlining of spaces. If n is 1, start underlining of
spaces; if n is 0, stop underlining of spaces. This is needed for
the cu request in nroff mode and is ignored otherwise. This
command is a gtroff extension.

xX anything<line break>
The ‘x’ stands for X-escape.

Send string anything uninterpreted to the device. If the line
following this command starts with a ‘+’ character this line is
interpreted as a continuation line in the following sense. The ‘+’
is ignored, but a newline character is sent instead to the device,
the rest of the line is sent uninterpreted. The same applies to
all following lines until the first character of a line is not a ‘+’
character. This command is generated by the gtroff escape
sequence \X. The line-continuing feature is a gtroff extension.

8.1.2.5 Obsolete Command

In at&t troff output, the writing of a single glyph is mostly done
by a very strange command that combines a horizontal move and a single
character giving the glyph name. It doesn’t have a command code, but is
represented by a 3-character argument consisting of exactly 2 digits and a
character.

ddg Move right dd (exactly two decimal digits) basic units ‘u’, then
print glyph g (represented as a single character).

In gtroff, arbitrary syntactical space around and within this
command is allowed to be added. Only when a preceding com-
mand on the same line ends with an argument of variable length
a separating space is obligatory. In at&t troff, large clusters
of these and other commands are used, mostly without spaces;
this made such output almost unreadable.

For modern high-resolution devices, this command does not make sense
because the width of the glyphs can become much larger than two decimal
digits. In gtroff, this is only used for the devices X75, X75-12, X100, and
X100-12. For other devices, the commands ‘t’ and ‘u’ provide a better
functionality.

178 The GNU Troff Manual

8.1.3 Intermediate Output Examples

This section presents the intermediate output generated from the same
input for three different devices. The input is the sentence ‘hell world’ fed
into gtroff on the command line.

High-resolution device ps
This is the standard output of gtroff if no ‘-T’ option is given.

shell> echo "hell world" | groff -Z -T ps

x T ps
x res 72000 1 1
x init
p1
x font 5 TR
f5
s10000
V12000
H72000
thell
wh2500
tw
H96620
torld
n12000 0
x trailer
V792000
x stop

This output can be fed into grops to get its representation as a
PostScript file.

Low-resolution device latin1
This is similar to the high-resolution device except that the posi-
tioning is done at a minor scale. Some comments (lines starting
with ‘#’) were added for clarification; they were not generated
by the formatter.

shell> echo "hell world" | groff -Z -T latin1

prologue
x T latin1
x res 240 24 40
x init
begin a new page
p1
font setup

Chapter 8: File formats 179

x font 1 R
f1
s10
initial positioning on the page
V40
H0
write text ‘hell’
thell
inform about space, and issue a horizontal jump
wh24
write text ‘world’
tworld
announce line break, but do nothing because ...
n40 0
... the end of the document has been reached
x trailer
V2640
x stop

This output can be fed into grotty to get a formatted text
document.

at&t troff output
Since a computer monitor has a very low resolution compared
to modern printers the intermediate output for the X Window
devices can use the jump-and-write command with its 2-digit
displacements.

shell> echo "hell world" | groff -Z -T X100

x T X100
x res 100 1 1
x init
p1
x font 5 TR
f5
s10
V16
H100
write text with jump-and-write commands
ch07e07l03lw06w11o07r05l03dh7
n16 0
x trailer
V1100
x stop

180 The GNU Troff Manual

This output can be fed into xditview or gxditview for display-
ing in X.
Due to the obsolete jump-and-write command, the text clusters
in the at&t troff output are almost unreadable.

8.1.4 Output Language Compatibility

The intermediate output language of at&t troff was first documented
in the unix troff manual, with later additions documented in A Typesetter-
indenpendent TROFF, written by Brian Kernighan.

The gtroff intermediate output format is compatible with this specifi-
cation except for the following features.
• The classical quasi device independence is not yet implemented.
• The old hardware was very different from what we use today. So the

groff devices are also fundamentally different from the ones in at&t
troff. For example, the at&t PostScript device is called post and has
a resolution of only 720 units per inch, suitable for printers 20 years ago,
while groff’s ps device has a resolution of 72000 units per inch. Maybe,
by implementing some rescaling mechanism similar to the classical quasi
device independence, groff could emulate at&t’s post device.

• The B-spline command ‘D~’ is correctly handled by the intermediate
output parser, but the drawing routines aren’t implemented in some of
the postprocessor programs.

• The argument of the commands ‘s’ and ‘x H’ has the implicit unit scaled
point ‘z’ in gtroff, while at&t troff has point (‘p’). This isn’t an
incompatibility but a compatible extension, for both units coincide for
all devices without a sizescale parameter in the ‘DESC’ file, including
all postprocessors from at&t and groff’s text devices. The few groff
devices with a sizescale parameter either do not exist for at&t troff,
have a different name, or seem to have a different resolution. So conflicts
are very unlikely.

• The position changing after the commands ‘Dp’, ‘DP’, and ‘Dt’ is illogical,
but as old versions of gtroff used this feature it is kept for compatibility
reasons.

8.2 Font Files

The gtroff font format is roughly a superset of the ditroff font format
(as used in later versions of at&t troff and its descendants). Unlike the
ditroff font format, there is no associated binary format; all files are text
files.3 The font files for device name are stored in a directory ‘devname’.
There are two types of file: a device description file called ‘DESC’ and for
each font f a font file called ‘f ’.

3 Plan 9 troff has also abandoned the binary format.

Chapter 8: File formats 181

8.2.1 ‘DESC’ File Format

The ‘DESC’ file can contain the following types of line. Except for the
charset keyword which must comes last (if at all), the order of the lines is
not important.

res n There are n machine units per inch.

hor n The horizontal resolution is n machine units.

vert n The vertical resolution is n machine units.

sizescale n
The scale factor for point sizes. By default this has a value of 1.
One scaled point is equal to one point/n. The arguments to
the unitwidth and sizes commands are given in scaled points.
See Section 5.19.2 [Fractional Type Sizes], page 111, for more
information.

unitwidth n
Quantities in the font files are given in machine units for fonts
whose point size is n scaled points.

prepro program
Call program as a preprocessor. Currently, this keyword is used
by groff with option ‘-Thtml’ only.

postpro program
Call program as a postprocessor. For example, the line

postpro grodvi

in the file ‘devdvi/DESC’ makes groff call grodvi if option
‘-Tdvi’ is given (and ‘-Z’ isn’t used).

tcommand This means that the postprocessor can handle the ‘t’ and ‘u’
intermediate output commands.

sizes s1 s2 ... sn 0
This means that the device has fonts at s1, s2, . . . sn scaled
points. The list of sizes must be terminated by 0 (this is digit
zero). Each si can also be a range of sizes m-n. The list can
extend over more than one line.

styles S1 S2 ... Sm
The first m font positions are associated with styles S1 . . . Sm.

fonts n F1 F2 F3 ... Fn
Fonts F1 . . . Fn are mounted in the font positions m+1, . . . ,
m+n where m is the number of styles. This command may extend
over more than one line. A font name of 0 means no font is
mounted on the corresponding font position.

family fam
The default font family is fam.

182 The GNU Troff Manual

use_charnames_in_special
This command indicates that gtroff should encode special char-
acters inside special commands. Currently, this is only used by
the html output device. See Section 5.31 [Postprocessor Ac-
cess], page 149.

papersize string ...
Select a paper size. Valid values for string are the ISO pa-
per types A0-A7, B0-B7, C0-C7, D0-D7, DL, and the US paper
types letter, legal, tabloid, ledger, statement, executive,
com10, and monarch. Case is not significant for string if it holds
predefined paper types. Alternatively, string can be a file name
(e.g. ‘/etc/papersize’); if the file can be opened, groff reads
the first line and tests for the above paper sizes. Finally, string
can be a custom paper size in the format length,width (no spaces
before and after the comma). Both length and width must have
a unit appended; valid values are ‘i’ for inches, ‘C’ for centime-
ters, ‘p’ for points, and ‘P’ for picas. Example: 12c,235p. An
argument which starts with a digit is always treated as a custom
paper format. papersize sets both the vertical and horizontal
dimension of the output medium.
More than one argument can be specified; groff scans from left
to right and uses the first valid paper specification.

pass_filenames
Tell gtroff to emit the name of the source file currently being
processed. This is achieved by the intermediate output com-
mand ‘F’. Currently, this is only used by the html output de-
vice.

print program
Use program as a spooler program for printing. If omitted, the
‘-l’ and ‘-L’ options of groff are ignored.

charset This line and everything following in the file are ignored. It is
allowed for the sake of backwards compatibility.

The res, unitwidth, fonts, and sizes lines are mandatory. Other com-
mands are ignored by gtroff but may be used by postprocessors to store
arbitrary information about the device in the ‘DESC’ file.

Here a list of obsolete keywords which are recognized by groff but com-
pletely ignored: spare1, spare2, biggestfont.

8.2.2 Font File Format

A font file, also (and probably better) called a font description file, has two
sections. The first section is a sequence of lines each containing a sequence
of blank delimited words; the first word in the line is a key, and subsequent
words give a value for that key.

Chapter 8: File formats 183

name f The name of the font is f.

spacewidth n
The normal width of a space is n.

slant n The glyphs of the font have a slant of n degrees. (Positive means
forward.)

ligatures lig1 lig2 ... lign [0]
Glyphs lig1, lig2, . . . , lign are ligatures; possible ligatures are
‘ff’, ‘fi’, ‘fl’, ‘ffi’ and ‘ffl’. For backwards compatibility, the
list of ligatures may be terminated with a 0. The list of ligatures
may not extend over more than one line.

special The font is special; this means that when a glyph is requested
that is not present in the current font, it is searched for in any
special fonts that are mounted.

Other commands are ignored by gtroff but may be used by postproces-
sors to store arbitrary information about the font in the font file.

The first section can contain comments which start with the ‘#’ character
and extend to the end of a line.

The second section contains one or two subsections. It must contain a
charset subsection and it may also contain a kernpairs subsection. These
subsections can appear in any order. Each subsection starts with a word on
a line by itself.

The word charset starts the character set subsection.4 The charset line
is followed by a sequence of lines. Each line gives information for one glyph.
A line comprises a number of fields separated by blanks or tabs. The format
is

name metrics type code [entity-name] [-- comment]
name identifies the glyph name5: If name is a single character c then it
corresponds to the gtroff input character c; if it is of the form ‘\c’ where
c is a single character, then it corresponds to the special character \[c];
otherwise it corresponds to the special character ‘\[name]’. If it is exactly
two characters xx it can be entered as ‘\(xx’. Note that single-letter spe-
cial characters can’t be accessed as ‘\c’; the only exception is ‘\-’ which is
identical to \[-].

gtroff supports 8-bit input characters; however some utilities have diffi-
culties with eight-bit characters. For this reason, there is a convention that
the entity name ‘charn’ is equivalent to the single input character whose
code is n. For example, ‘char163’ would be equivalent to the character with
code 163 which is the pounds sterling sign in the ISO Latin-1 character set.

4 This keyword is misnamed since it starts a list of ordered glyphs, not characters.
5 The distinction between input, characters, and output, glyphs, is not clearly separated

in the terminology of groff; for example, the char request should be called glyph since
it defines an output entity.

184 The GNU Troff Manual

You shouldn’t use ‘charn’ entities in font description files since they are
related to input, not output. Otherwise, you get hard-coded connections
between input and output encoding which prevents use of different (input)
character sets.

The name ‘---’ is special and indicates that the glyph is unnamed; such
glyphs can only be used by means of the \N escape sequence in gtroff.

The type field gives the glyph type:

1 the glyph has a descender, for example, ‘p’;

2 the glyph has an ascender, for example, ‘b’;

3 the glyph has both an ascender and a descender, for example,
‘(’.

The code field gives the code which the postprocessor uses to print the
glyph. The glyph can also be input to gtroff using this code by means
of the \N escape sequence. code can be any integer. If it starts with ‘0’
it is interpreted as octal; if it starts with ‘0x’ or ‘0X’ it is interpreted as
hexadecimal. Note, however, that the \N escape sequence only accepts a
decimal integer.

The entity-name field gives an ascii string identifying the glyph which the
postprocessor uses to print the gtroff glyph name. This field is optional and
has been introduced so that the html device driver can encode its character
set. For example, the glyph ‘\[Po]’ is represented as ‘£’ in html 4.0.

Anything on the line after the entity-name field resp. after ‘--’ will be
ignored.

The metrics field has the form:
width[,height[,depth[,italic-correction

[,left-italic-correction[,subscript-correction]]]]]
There must not be any spaces between these subfields (it has been split here
into two lines for better legibility only). Missing subfields are assumed to
be 0. The subfields are all decimal integers. Since there is no associated
binary format, these values are not required to fit into a variable of type
‘char’ as they are in ditroff. The width subfield gives the width of the
glyph. The height subfield gives the height of the glyph (upwards is positive);
if a glyph does not extend above the baseline, it should be given a zero
height, rather than a negative height. The depth subfield gives the depth of
the glyph, that is, the distance from the baseline to the lowest point below
the baseline to which the glyph extends (downwards is positive); if a glyph
does not extend below the baseline, it should be given a zero depth, rather
than a negative depth. The italic-correction subfield gives the amount of
space that should be added after the glyph when it is immediately to be
followed by a glyph from a roman font. The left-italic-correction subfield
gives the amount of space that should be added before the glyph when it is
immediately to be preceded by a glyph from a roman font. The subscript-

Chapter 8: File formats 185

correction gives the amount of space that should be added after a glyph
before adding a subscript. This should be less than the italic correction.

A line in the charset section can also have the format
name "

This indicates that name is just another name for the glyph mentioned in
the preceding line.

The word kernpairs starts the kernpairs section. This contains a se-
quence of lines of the form:

c1 c2 n

This means that when glyph c1 appears next to glyph c2 the space between
them should be increased by n. Most entries in the kernpairs section have a
negative value for n.

186 The GNU Troff Manual

Chapter 9: Installation 187

9 Installation

188 The GNU Troff Manual

A: Copying This Manual 189

A Copying This Manual

A.1 GNU Free Documentation License

Version 1.1, March 2000
Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other
written document free in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying
it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by
others.
This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.
We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the soft-
ware does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice
placed by the copyright holder saying it can be distributed under the
terms of this License. The “Document”, below, refers to any such man-
ual or work. Any member of the public is a licensee, and is addressed
as “you”.
A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (For example, if the Document is in part

190 The GNU Troff Manual

a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connec-
tion with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says
that the Document is released under this License.
The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License.
A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, whose contents can be viewed and edited directly and straight-
forwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup
has been designed to thwart or discourage subsequent modification by
readers is not Transparent. A copy that is not “Transparent” is called
“Opaque”.
Examples of suitable formats for Transparent copies include plain ascii
without markup, Texinfo input format, LaTEX input format, sgml
or xml using a publicly available dtd, and standard-conforming sim-
ple html designed for human modification. Opaque formats include
PostScript, pdf, proprietary formats that can be read and edited only
by proprietary word processors, sgml or xml for which the dtd and/or
processing tools are not generally available, and the machine-generated
html produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical mea-
sures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

A: Copying This Manual 191

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than
100, and the Document’s license notice requires Cover Texts, you must
enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transpar-
ent copy along with each Opaque copy, or state in or with each Opaque
copy a publicly-accessible computer-network location containing a com-
plete Transparent copy of the Document, free of added material, which
the general network-using public has access to download anonymously
at no charge using public-standard network protocols. If you use the
latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transpar-
ent copy will remain thus accessible at the stated location until at least
one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct

from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

192 The GNU Troff Manual

B. List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adja-

cent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it

an item stating at least the title, year, new authors, and publisher
of the Modified Version as given on the Title Page. If there is no
section entitled “History” in the Document, create one stating the
title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, pre-
serve the section’s title, and preserve in the section all the substance
and tone of each of the contributor acknowledgments and/or dedi-
cations given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

M. Delete any section entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict
in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these

A: Copying This Manual 193

sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—
for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through ar-
rangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrange-
ment made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice.
The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice
of the combined work.
In the combination, you must combine any sections entitled “History”
in the various original documents, forming one section entitled “His-
tory”; likewise combine any sections entitled “Acknowledgments”, and
any sections entitled “Dedications”. You must delete all sections enti-
tled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

194 The GNU Troff Manual

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage
or distribution medium, does not as a whole count as a Modified Ver-
sion of the Document, provided no compilation copyright is claimed for
the compilation. Such a compilation is called an “aggregate”, and this
License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they are
not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one quarter of the
entire aggregate, the Document’s Cover Texts may be placed on covers
that surround only the Document within the aggregate. Otherwise they
must appear on covers around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of
a disagreement between the translation and the original English version
of this License, the original English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided for under this License. Any other attempt
to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, par-
ties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such
new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this

http://www.gnu.org/copyleft/

A: Copying This Manual 195

License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

196 The GNU Troff Manual

A.1.1 ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts being list.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” in-
stead of saying which ones are invariant. If you have no Front-Cover Texts,
write “no Front-Cover Texts” instead of “Front-Cover Texts being list”; like-
wise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.

B: Request Index 197

B Request Index

Requests appear without the leading control character (normally either
‘.’ or ‘’’).

A
ab . 154

ad . 69

af . 65

aln . 63

als . 116

am . 122

am1 . 122

ami . 122

as . 116

as1 . 116

asciify . 141

B
backtrace . 155

bd . 105

blm . 136

box . 137

boxa . 137

bp . 93

br . 68

break . 120

brp . 69

C
c2 . 82

cc . 82

ce . 70

cf . 146

cflags . 101

ch . 135

char . 102

chop . 117

close . 149

color . 144

continue . 121

cp . 159

cs . 105

cu . 105

D
da . 137
de . 121
de1 . 121
defcolor . 144
dei . 121
di . 137
do . 159
ds . 113
ds1 . 113
dt . 135

E
ec . 82
ecr . 83
ecs . 83
el . 119
em . 136
eo . 82
ev . 142
evc . 142
ex . 155

F
fam . 96
fc . 81
fchar . 102
fi . 68
fl . 155
fp . 98
fspecial . 103
ft . 95, 99
ftr . 96

H
hc . 73
hcode . 74
hla . 75
hlm . 72
hpf . 73
hpfa . 73
hpfcode . 73

198 The GNU Troff Manual

hw . 72
hy . 72
hym . 74
hys . 75

I
ie . 119
if . 118
ig . 61
in . 88
it . 136
itc . 136

K
kern . 106

L
lc . 81
length . 116
lf . 154
lg . 106
linetabs . 80
ll . 89
ls . 76
lt . 92

M
mc . 151
mk . 125
mso . 145

N
na . 69
ne . 93
nf . 68
nh . 72
nm . 150
nn . 151
nop . 119
nr . 62, 64
nroff . 87
ns . 77
nx . 146

O
open . 148
opena . 148
os . 94
output . 140

P
pc . 93
pi . 147
pl . 91
pm . 155
pn . 93
pnr . 155
po . 88
ps . 109
psbb . 152
pso . 145
ptr . 155
pvs . 111

R
rchar . 103
rd . 146
return . 123
rj . 71
rm . 116
rn . 116
rnn . 63
rr . 63
rs . 77
rt . 125

S
shc . 75
shift . 124
sizes . 110
so . 145
sp . 76
special . 103
spreadwarn . 156
ss . 70
sty . 97
substring . 116
sv . 94
sy . 148

B: Request Index 199

T
ta . 78
tc . 79
ti . 89
tkf . 106
tl . 92
tm . 154
tm1 . 154
tmc . 154
tr . 84
trf . 146
trin . 84
trnt . 86
troff . 86

U

uf . 105
ul . 104
unformat . 141

V
vpt . 133
vs . 110

W
warn . 157
warnscale . 156
wh . 133
while . 119
write . 148
writec . 148
writem . 149

200 The GNU Troff Manual

C: Escape Index 201

C Escape Index

Any escape sequence \X with X not in the list below emits a warning,
printing glyph X.

\ . 100
\! . 139
\" . 60
\# . 61
\$. 124
\$* . 124
\$@ . 124
\$0 . 124
\% . 73
\& . 107
\’ . 101
\) . 108
* . 113
\, . 107
\- . 101
\. 84
\/ . 107
\: . 73
\? . 139
\^ . 127
\‘ . 101
\{ . 119
\} . 119
\\ . 83
\| . 127
\~ . 127
\0 . 127
\a . 80
\A . 54
\b . 132
\B . 53
\c . 90
\C . 101
\d . 126

\D . 130
\e . 83
\E . 83
\f . 95, 99
\F . 96
\g . 66
\h . 127
\H . 104
\k . 128
\l . 129
\L . 130
\m . 144
\M . 145
\n . 63, 64
\N . 101
\o . 128
\O . 143
\p . 69
\r . 126
\R . 62
\〈RET〉 . 90
\s . 109
\S . 104
\〈SP〉 . 127
\t . 77
\u . 126
\v . 126
\V . 149
\w . 127
\x . 76
\X . 149
\Y . 150
\z . 128
\Z . 129

202 The GNU Troff Manual

D: Operator Index 203

D Operator Index

!
! . 53

%
% . 53

&
& . 53

(
(. 53

)
) . 53

*
* . 53

+
+ . 53

-
- . 53

/
/ . 53

:
: . 53

<
< . 53
<= . 53
<? . 53

=
= . 53
== . 53

>
> . 53
>= . 53
>? . 53

204 The GNU Troff Manual

E: Register Index 205

E Register Index

The macro package or program a specific register belongs to is appended
in brackets.

A register name x consisting of exactly one character can be accessed
as ‘\nx’. A register name xx consisting of exactly two characters can be
accessed as ‘\n(xx’. Register names xxx of any length can be accessed as
‘\n[xxx]’.

$
$$. 67

%
% . 93

.

.$. 123

.a . 76

.A . 67

.b . 105

.c . 67

.C . 159

.cdp . 143

.ce . 70

.cht . 143

.color . 144

.csk . 143

.d . 138

.ev . 142

.f . 98

.F . 66

.fam . 96

.fn . 96

.fp . 98

.g . 67

.h . 138

.H . 66

.hla . 75

.hlc . 72

.hlm . 72

.hy . 72

.hym . 74

.hys . 75

.i . 88

.in . 89

.int . 90

.j . 69

.k . 128

.kern . 106

.l . 89

.L . 76

.lg . 106

.linetabs . 80

.ll . 89

.lt . 92

.ne . 135

.ns . 77

.o . 88

.p . 91

.P . 67

.pn . 93

.ps . 112

.psr . 112

.pvs . 111

.rj . 71

.s . 109

.sr . 112

.ss . 70

.sss . 70

.t . 135

.T . 68

.tabs . 78

.trunc . 135

.u . 68

.v . 110

.V . 66

.vpt . 133

.warn . 157

.x . 67

.y . 67

.Y . 67

.z . 138

C
c. 67
ct . 127

206 The GNU Troff Manual

D
dl . 139
dn . 139
dw . 67
dy . 67

F
FF [ms] . 29
FI [ms] . 29
FL [ms] . 29
FM [ms] . 28

H
HM [ms] . 28
hours . 66
hp . 128

L
LL [ms] . 27
llx . 152
lly . 152
ln . 67
LT [ms] . 28

M
MINGW [ms] . 29, 48
minutes . 66
mo . 67

N
nl . 94

O
opmaxx . 143
opmaxy . 143
opminx . 143
opminy . 143

P
PD [ms] . 28
PI [ms] . 28
PO [ms] . 27
PS [ms] . 28
ps4html [grohtml] 166

Q
QI [ms] . 28

R
rsb . 127
rst . 127

S
sb . 127
seconds . 66
skw . 127
slimit . 156
ssc . 127
st . 127
systat . 148

U
urx . 152
ury . 152

V
VS [ms] . 28

Y
year . 67
yr . 67

F: Macro Index 207

F Macro Index

The macro package a specific macro belongs to is appended in brackets.
They appear without the leading control character (normally ‘.’).

[
[[ms] . 40

]
] [ms] . 40

1
1C [ms] . 42

2
2C [ms] . 43

A
AB [ms] . 30

AE [ms] . 30

AI [ms] . 30

AM [ms] . 45, 48

AU [ms] . 30

B
B [man] . 24

B [ms] . 33

B1 [ms] . 40

B2 [ms] . 40

BD [ms] . 39

BI [man] . 24

BI [ms] . 34

BR [man] . 24

BX [ms] . 34

C
CD [ms] . 39

CW [ms] . 33, 48

D
DA [ms] . 30

DE [ms] . 38, 39

DS [ms] . 38, 39, 48

DT [man] . 25

E
EF [ms] . 42

EH [ms] . 42

EN [ms] . 40

EQ [ms] . 40

F
FE [ms] . 41

FS [ms] . 41

H
HP [man] . 23

I
I [man] . 24

I [ms] . 33

IB [man] . 24

ID [ms] . 38

IP [man] . 23

IP [ms] . 34

IR [man] . 24

IX [ms] . 48

K
KE [ms] . 39

KF [ms] . 39

KS [ms] . 39

208 The GNU Troff Manual

L
LD [ms] . 38

LG [ms] . 34

LP [man] . 23

LP [ms] . 31

M
MC [ms] . 43

N
ND [ms] . 30

NH [ms] . 33

NL [ms] . 34

O
OF [ms] . 42

OH [ms] . 42

P
P [man] . 23

PD [man] . 25

PE [ms] . 40

PP [man] . 23

PP [ms] . 31

PS [ms] . 40

PX [ms] . 44

Q
QP [ms] . 32

R
R [ms] . 33
RB [man] . 24
RD [ms] . 39
RE [man] . 23
RE [ms] . 38
RI [man] . 24
RP [ms] . 29
RS [man] . 23
RS [ms] . 38

S
SB [man] . 24
SH [man] . 22
SH [ms] . 33
SM [man] . 24
SM [ms] . 34
SS [man] . 22

T
TA [ms] . 38
TC [ms] . 44
TE [ms] . 40
TH [man] . 22
TL [ms] . 30
TP [man] . 22
TS [ms] . 40

U
UL [ms] . 34

X
XA [ms] . 43
XE [ms] . 43
XP [ms] . 32
XS [ms] . 43

G: String Index 209

G String Index

The macro package or program a specific string belongs to is appended
in brackets.

A string name x consisting of exactly one character can be accessed as
‘*x’. A string name xx consisting of exactly two characters can be accessed
as ‘*(xx’. String names xxx of any length can be accessed as ‘*[xxx]’.

!
! [ms] . 46

’
’ [ms] . 45

*
* [ms] . 41
*Q [ms] . 45
*U [ms] . 45

,
, [ms] . 46

-
- [ms] . 45

.

. [ms] . 46

.T . 68

:
: [ms] . 46

?
? [ms] . 46

^
^ [ms] . 46

_ [ms] . 46

‘
‘ [ms] . 46

~
~ [ms] . 46

3
3 [ms] . 46

8
8 [ms] . 46

A
ABSTRACT [ms] . 45

ae [ms] . 47

Ae [ms] . 47

C
CF [ms] . 42

CH [ms] . 42

D
d- [ms] . 47

D- [ms] . 47

L
LF [ms] . 42

LH [ms] . 42

lq [man] . 25

210 The GNU Troff Manual

M
MONTH1 [ms] . 45
MONTH10 [ms] . 45
MONTH11 [ms] . 45
MONTH12 [ms] . 45
MONTH2 [ms] . 45
MONTH3 [ms] . 45
MONTH4 [ms] . 45
MONTH5 [ms] . 45
MONTH6 [ms] . 45
MONTH7 [ms] . 45
MONTH8 [ms] . 45
MONTH9 [ms] . 45

O
o [ms] . 46

Q
q [ms] . 47

R

R [man] . 25
REFERENCES [ms] . 44
RF [ms] . 42
RH [ms] . 42
rq [man] . 25

S
S [man] . 25

T
th [ms] . 47
Th [ms] . 46
Tm [man] . 25
TOC [ms] . 45

V
v [ms] . 46

W
www-image-template [grohtml] 166

H: Glyph Name Index 211

H Glyph Name Index

A glyph name xx consisting of exactly two characters can be accessed as
‘\(xx’. Glyph names xxx of any length can be accessed as ‘\[xxx]’.

212 The GNU Troff Manual

I: Font File Keyword Index 213

I Font File Keyword Index

#
. 183

-
--- . 183

B
biggestfont . 182

C
charset . 182, 183

F
family . 95, 99, 181
fonts . 99, 103, 181

H
hor . 181

K
kernpairs . 185

L
ligatures . 183

N
name . 183

P
papersize . 182
pass_filenames . 182
postpro . 181
prepro . 181
print . 182

R
res . 181

S
sizes . 181
sizescale . 181
slant . 183
spacewidth . 183
spare1 . 182
spare2 . 182
special . 105, 183
styles. 95, 97, 99, 181

T
tcommand . 181

U
unitwidth . 181
use_charnames_in_special 149, 182

V
vert . 181

214 The GNU Troff Manual

J: Program and File Index 215

J Program and File Index

A
an.tmac . 21

C
changebar . 151

D
DESC 95, 97, 99, 101, 103
DESC file format . 181
DESC, and font mounting 98
DESC, and use_charnames_in_special

. 149
ditroff . 2

E
eqn . 40

G
geqn . 7
geqn, invocation in manual pages 25
ggrn . 7
gpic . 7
grap . 7
grefer . 7
grefer, invocation in manual pages . . . 25
groff . 7
grog . 14
grohtml . 25
gsoelim . 7
gtbl . 7
gtbl, invocation in manual pages 25
gtroff . 7

H
hyphen.us . 74

M
makeindex . 19
man, invocation of preprocessors 25
man-old.tmac . 21
man.local . 22
man.tmac . 21

N
nrchbar . 151

P
perl . 148
pic . 40
post-grohtml . 9
pre-grohtml . 9

R
refer . 40

S
soelim . 154

T
tbl . 40
trace.tmac . 122, 123
troffrc 8, 74, 75, 86, 88
troffrc-end 8, 74, 75, 86
tty.tmac . 87

216 The GNU Troff Manual

K: Concept Index 217

K Concept Index

"
", at end of sentence 50, 102
", in a macro argument 57

%
%, as delimiter . 59

&
&, as delimiter . 59

’
’, as a comment . 60
’, at end of sentence 50, 102
’, delimiting arguments 59

(
(, as delimiter . 59
(, starting a two-character identifier . . 55,

59

)
), as delimiter . 59
), at end of sentence 50, 102

*
*, as delimiter . 59
*, at end of sentence 50, 102

+
+, and page motion 53
+, as delimiter . 59

-
-, and page motion 53
-, as delimiter . 59

.

., as delimiter . 59

.h register, difference to nl 138

.ps register, in comparison with .psr

. 112
.s register, in comparison with .sr. . . 112
.S register, Plan 9 alias for .tabs 79
.t register, and diversions 135
.tabs register, Plan 9 alias (.S) 79
.V register, and vs 110

/
/, as delimiter . 59

:
:, as delimiter . 59

<
<, as delimiter . 59

=
=, as delimiter . 59

>
>, as delimiter . 59

[
[, macro names starting with, and refer

. 54
[, starting an identifier 55, 59

]
], as part of an identifier 54
], at end of sentence 50, 102
], ending an identifier 55, 59
], macro names starting with, and refer

. 54

218 The GNU Troff Manual

\
\!, and output . 140
\!, and trnt . 86
\!, in top-level diversion 140
\!, incompatibilities with at&t troff

. 160
\!, used as delimiter 59, 60
\$, when reading text for a macro 123
\%, and translations 85
\%, following \X or \Y 73
\%, in \X . 149
\%, incompatibilities with at&t troff

. 160
\%, used as delimiter 59, 60
\&, and glyph definitions 102
\&, and translations 85
\&, at end of sentence 50
\&, escaping control characters 57
\&, in \X . 149
\&, incompatibilities with at&t troff

. 160
\&, used as delimiter 59
\’, and translations 85
\’, incompatibilities with at&t troff

. 160
\’, used as delimiter 59, 60
\(, and translations 85
\), in \X . 149
\), used as delimiter 59
*, and warnings 158
*, incompatibilities with at&t troff

. 159
*, when reading text for a macro 123
\, disabling (eo) . 82
\,, used as delimiter 59
\-, and translations 85
\-, incompatibilities with at&t troff

. 160
\-, used as delimiter 59, 60
\/, used as delimiter 59, 60
\:, in \X . 149
\:, used as delimiter 59, 60
\?, in top-level diversion 140
\?, incompatibilities with at&t troff

. 160
\?, used as delimiter 59
\@, used as delimiter 59, 60
\[, and translations 85
\^, incompatibilities with at&t troff

. 160
\^, used as delimiter 59
_, and translations 85

_, incompatibilities with at&t troff

. 160
_, used as delimiter 59, 60
\‘, and translations 85
\‘, incompatibilities with at&t troff

. 160
\‘, used as delimiter 59, 60
\{, incompatibilities with at&t troff

. 160
\{, used as delimiter 59, 60
\}, and warnings 158
\}, incompatibilities with at&t troff

. 160
\}, used as delimiter 59, 60
\\, when reading text for a macro 123
\|, incompatibilities with at&t troff

. 160
\|, used as delimiter 59
\~, and translations 85
\~, difference to \〈SP〉 57
\~, used as delimiter 59
\0, used as delimiter 59
\A, allowed delimiters 59
\a, and translations 85
\A, incompatibilities with at&t troff

. 160
\a, used as delimiter 59
\B, allowed delimiters 59
\b, limitations . 132
\b, possible quote characters 59
\C, allowed delimiters 59
\c, and fill mode . 91
\c, and no-fill mode 91
\C, and translations 85
\c, incompatibilities with at&t troff

. 160
\c, used as delimiter 59, 60
\D, allowed delimiters 59
\d, used as delimiter 59
\e, and glyph definitions 102
\e, and translations 85
\e, incompatibilities with at&t troff

. 160
\e, used as delimiter 59, 60
\E, used as delimiter 59
\F, and changing fonts 95
\F, and font positions 99
\f, and font translations. 96
\f, incompatibilities with at&t troff

. 159
\h, allowed delimiters 59
\H, allowed delimiters 59

K: Concept Index 219

\H, incompatibilities with at&t troff

. 159

\H, using + and - . 53

\H, with fractional type sizes 111

\l, allowed delimiters 59

\L, allowed delimiters 59

\l, and glyph definitions 102

\L, and glyph definitions 102

\N, allowed delimiters 59

\N, and translations 85

\n, and warnings 158

\n, incompatibilities with at&t troff

. 159

\n, when reading text for a macro 123

\o, possible quote characters 59

\p, used as delimiter 59, 60

\R, after \c . 91

\R, allowed delimiters 59

\R, and warnings 158

\R, difference to nr 64

\r, used as delimiter 59

\R, using + and - . 53

\〈RET〉, when reading text for a macro
. 123

\s, allowed delimiters 59

\S, allowed delimiters 59

\s, incompatibilities with at&t troff

. 159

\S, incompatibilities with at&t troff

. 159

\s, using + and - . 53

\s, with fractional type sizes 111

\〈SP〉, difference to \~ 57

\〈SP〉, incompatibilities with at&t troff

. 160

\〈SP〉, used as delimiter 59

\t, and translations 85

\t, and warnings 158

\t, used as delimiter 59

\u, used as delimiter 59

\v, allowed delimiters 59

\v, internal representation 153

\w, allowed delimiters 59

\x, allowed delimiters 59

\X, and special characters 149

\X, followed by \% . 73

\X, possible quote characters 59

\Y, followed by \% . 73

\Z, allowed delimiters 59

|
|, and page motion 53

8
8-bit input . 183

A
aborting (ab) . 154
absolute position operator (|) 53
accent marks [ms] . 44
access of postprocessor 149
accessing unnamed glyphs with \N . . . 183
activating kerning (kern) 106
activating ligatures (lg) 106
activating track kerning (tkf) 106
ad request, and hyphenation margin . . . 74
ad request, and hyphenation space 75
adjusting . 49
adjusting and filling, manipulating 68
adjustment mode register (.j) 69
alias, diversion, creating (als) 116
alias, macro, creating (als) 116
alias, number register, creating (aln) . . 63
alias, string, creating (als) 116
als request, and \$0 124
am, am1, ami requests, and warnings . . 158
annotations . 19
appending to a diversion (da) 137
appending to a file (opena) 148
appending to a macro (am) 122
appending to a string (as) 116
arc, drawing (\D’a ...’) 131
argument delimiting characters 59
arguments to requests 57
arguments, macro (\$) 124
arguments, of strings 113
arithmetic operators 53
artificial fonts . 103
as, as1 requests, and comments 60
as, as1 requests, and warnings 158
ascii approximation output register (.A)

. 10, 67
ascii, encoding . 9
asciify request, and writem 149
assigning formats (af) 65
assignments, indirect 63
assignments, nested 63
at&t troff, ms macro package differences

. 47

220 The GNU Troff Manual

auto-increment . 64
available glyphs, list (groff char(7) man

page) . 100

B
backslash, printing (\\, \e, \E, \[rs])

. 60, 160
backspace character 54
backspace character, and translations . . 85
backtrace of input stack (backtrace)

. 155
baseline . 109
basic unit (u) . 51
basics of macros . 15
bd request, and font styles 97
bd request, and font translations 96
bd request, incompatibilities with at&t

troff . 160
begin of conditional block (\{) 119
beginning diversion (di) 137
blank line . 50, 56
blank line (sp) . 16
blank line macro (blm) 50, 56, 136
blank line traps . 136
blank lines, disabling 77
block, conditional, begin (\{) 119
block, condititional, end (\}) 119
bold face [man] . 24
bold face, imitating (bd) 105
bottom margin . 91
bounding box. 152
box rule glyph (\[br]) 130
box, boxa requests, and warnings 158
bp request, and top-level diversion. 93
bp request, causing implicit linebreak . . 68
bp request, using + and - 53
br glyph, and cflags 102
break . 15, 68
break (br) . 17
break request, in a while loop 120
break, implicit . 50
built-in registers . 66
bulleted list, example markup [ms] 34

C
c unit . 51
calling convention of preprocessors 25
capabilities of groff 3
ce request, causing implicit linebreak . . 68
ce request, difference to ‘.ad c’ 69

centered text . 69
centering lines (ce) 16, 70
centimeter unit (c) 51
cf request, causing implicit linebreak . . 68
changing font family (fam, \F) 96
changing font position (\f) 99
changing font style (sty) 97
changing fonts (ft, \f) 95
changing format, and read-only registers

. 66
changing the font height (\H) 104
changing the font slant (\S) 104
changing the page number character (pc)

. 93
changing trap location (ch) 135
changing type sizes (ps, \s) 109
changing vertical line spacing (vs) . . . 110
char request, and soft hyphen character

. 75
char request, and translations 85
char request, used with \N 101
character . 99
character properties (cflags) 101
character translations 82
character, backspace 54
character, backspace, and translations

. 85
character, control (.) 56
character, control, changing (cc) 82
character, defining (char) 102
character, escape, changing (ec). 82
character, escape, while defining glyph

. 102
character, field delimiting (fc) 81
character, field padding (fc) 81
character, hyphenation (\%) 73
character, leader repetition (lc) 81
character, leader, and translations 85
character, leader, non-interpreted (\a)

. 80
character, named (\C) 101
character, newline. 59
character, newline, and translations . . . 85
character, no-break control (’) 56
character, no-break control, changing (c2)

. 82
character, soft hyphen, setting (shc) . . . 75
character, space . 59
character, special . 85
character, tab . 59
character, tab repetition (tc) 79
character, tab, and translations 85

K: Concept Index 221

character, tab, non-interpreted (\t) . . . 77
character, tabulator 50
character, transparent 50, 102
character, whitespace 54
character, zero width space (\&) . . 57, 106,

129
characters, argument delimiting 59
characters, end-of-sentence 102
characters, hyphenation 102
characters, input, and output glyphs,

compatibility with at&t troff . . 160
characters, invalid for trf request 146
characters, invalid input 54
characters, overlapping 102
characters, special 165
characters, unnamed, accessing with \N

. 183
circle, drawing (\D’c ...’) 131
circle, solid, drawing (\D’C ...’). 131
closing file (close) 149
code, hyphenation (hcode) 74
color, default . 144
colors . 144
command prefix . 11
command-line options 8
commands, embedded 56
comments . 60
comments in font files 183
comments, lining up with tabs 60
comments, with ds 113
common features . 17
common name space of macros, diversions,

and strings . 114
comparison operators 53
compatibility mode 158, 159
conditional block, begin (\{) 119
conditional block, end (\}) 119
conditional page break (ne) 93
conditionals and loops 117
consecutive hyphenated lines (hlm) 72
constant glyph space mode (cs) 105
contents, table of 19, 81
continuation, input line (\) 90
continuation, output line (\c) 90
continue request, in a while loop 120
continuous underlining (cu) 105
control character (.) 56
control character, changing (cc) 82
control character, no-break (’) 56
control character, no-break, changing (c2)

. 82
control, line . 90

control, page . 93
conventions for input 51
copy-in mode . 123
copy-in mode, and macro arguments . . 124
copy-in mode, and write requests 148
copying environment (evc) 142
correction between italic and roman glyph

(\/, \,) . 107
correction, italic (\/) 107
correction, left italic (\,) 107
cover page macros, [ms] 29
cp request, and glyph definitions 102
cp1047 . 9
creating alias, for diversion (als) 116
creating alias, for macro (als) 116
creating alias, for number register (aln)

. 63
creating alias, for string (als) 116
creating new characters (char) 102
credits . 5
cs request, and font styles 97
cs request, and font translations 96
cs request, incompatibilities with at&t

troff . 160
cs request, with fractional type sizes . . 111
current directory . 12
current input file name register (.F) . . . 66
current time . 148
current time, hours (hours) 66
current time, minutes (minutes) 66
current time, seconds (seconds) 66

D
da request, and warnings 157, 158
date, day of the month register (dy) . . . 67
date, day of the week register (dw) 67
date, month of the year register (mo) . . 67
date, year register (year, yr) 67
day of the month register (dy) 67
day of the week register (dw) 67
de request, and while 120
de, de1, dei requests, and warnings . . 158
debugging . 154
default color . 144
default indentation [man]. 25
default indentation, resetting [man] 24
default units . 52
defining character (char) 102
defining glyph (char) 102
defining symbol (char) 102
delayed text . 19

222 The GNU Troff Manual

delimited arguments, incompatibilities
with at&t troff 159

delimiting character, for fields (fc) 81
delimiting characters for arguments . . . 59
‘DESC’ file, format 181
devices for output 4, 165
dg glyph, at end of sentence 50, 102
di request, and warnings 157, 158
differences in implementation 159
digit width space (\0) 127
digits, and delimiters 59
dimensions, line . 87
directories for fonts 13
directories for macros 12
directory, current . 12
directory, for tmac files 12
directory, home . 12
directory, platform-specific 13
directory, site-specific 13
disabling \ (eo) . 82
disabling hyphenation (\%) 73
displays . 18
displays [ms] . 38
distance to next trap register (.t) 135
ditroff, the program 2
diversion name register (.z) 138
diversion trap, setting (dt) 135
diversion traps . 135
diversion, appending (da) 137
diversion, beginning (di) 137
diversion, creating alias (als) 116
diversion, ending (di) 137
diversion, nested . 138
diversion, removing (rm) 116
diversion, renaming (rn) 116
diversion, stripping final newline 115
diversion, top-level 137
diversion, top-level, and \! 140
diversion, top-level, and \? 140
diversion, top-level, and bp 93
diversion, unformatting (asciify) 141
diversion, vertical position in, register (.d)

. 138
diversions . 137
diversions, shared name space with macros

and strings . 114
documents, multi-file 154
documents, structuring the source code

. 56
double quote, in a macro argument 57
double-spacing (ls) 16, 76
double-spacing (vs, pvs). 111

drawing a circle (\D’c ...’) 131
drawing a line (\D’l ...’) 130
drawing a polygon (\D’p ...’) 131
drawing a solid circle (\D’C ...’) 131
drawing a solid ellipse (\D’E ...’) . . . 131
drawing a solid polygon (\D’P ...’) . . 132
drawing a spline (\D’~ ...’) 131
drawing an arc (\D’a ...’) 131
drawing an ellipse (\D’e ...’) 131
drawing horizontal lines (\l) 129
drawing requests . 129
drawing vertical lines (\L) 130
ds request, and comments 113
ds request, and double quotes 58
ds request, and leading spaces 113
ds, ds1 requests, and comments 60
ds, ds1 requests, and warnings 158
dumping number registers (pnr) 155
dumping symbol table (pm) 155
dumping traps (ptr) 155

E
ebcdic encoding 9, 50
ebcdic encoding of a tab 77
ebcdic encoding of backspace 54
el request, and warnings 157
ellipse, drawing (\D’e ...’) 131
ellipse, solid, drawing (\D’E ...’) 131
em glyph, and cflags 102
em unit (m) . 52
embedded commands. 56
embedding PostScript 165
embolding of special fonts 105
empty line. 50
empty line (sp) . 16
empty space before a paragraph [man] . . 25
en unit (n) . 52
enabling vertical position traps (vpt)

. 133
encoding, ascii . 9
encoding, cp1047. 9
encoding, ebcdic 9, 50
encoding, latin-1 . 9
encoding, utf-8 . 9
end of conditional block (\}) 119
end-of-input macro (em) 136
end-of-input trap, setting (em) 136
end-of-input traps 136
end-of-sentence characters 102
ending diversion (di) 137

K: Concept Index 223

environment number/name register (.ev)
. 142

environment variables 11
environment, copying (evc) 142
environment, last glyph 143
environment, switching (ev) 142
environments . 141
eqn, the program 163
equations [ms] . 40
escape character, changing (ec) 82
escape character, while defining glyph

. 102
escapes . 58
escaping newline characters, in strings

. 113
ex request, use in debugging 155
ex request, used with nx and rd 147
example markup, bulleted list [ms] 34
example markup, glossary-style list [ms]

. 35
example markup, multi-page table [ms]

. 41
example markup, numbered list [ms] . . . 35
example markup, title page 30
examples of invocation 13
exiting (ex) . 155
expansion of strings (*) 113
explicit hyphen (\%) 72
expression, order of evaluation 53
expressions . 52
expressions, and space characters. 53
extra post-vertical line space (\x) 111
extra post-vertical line space register (.a)

. 76
extra pre-vertical line space (\x) 111
extra spaces . 49
extremum operators (>?, <?) 53

F
f unit . 52
f unit, and colors 144
fam request, and changing fonts 95
fam request, and font positions 99
families, font . 96
FDL, GNU Free Documentation License

. 189
features, common . 17
fi request, causing implicit linebreak . . 68
field delimiting character (fc) 81
field padding character (fc) 81
fields . 81

fields, and tabs . 77
figures [ms] . 40
file formats . 167
file, appending to (opena) 148
file, closing (close) 149
file, inclusion (so) 145
file, opening (open) 148
file, processing next (nx) 146
file, writing to (write) 148
files, font . 180
files, macro, searching 12
fill mode . 50, 70, 157
fill mode (fi) . 68
fill mode, and \c . 91
filling . 49
filling and adjusting, manipulating 68
final newline, stripping in diversions . . 115
fl request, causing implicit linebreak . . 68
floating keep. 18
flush output (fl) 155
font description file, format 181, 182
font directories . 13
font families . 96
font family, changing (fam, \F) 96
font file, format . 182
font files . 180
font files, comments 183
font for underlining (uf) 105
font height, changing (\H) 104
font path . 13
font position register (.f). 98
font position, changing (\f) 99
font positions . 98
font selection [man] 24
font slant, changing (\S) 104
font style, changing (sty) 97
font styles . 96
font, mounting (fp) 98
font, previous (ft, \f[], \fP) 95
fonts . 95
fonts, artificial . 103
fonts, changing (ft, \f) 95
fonts, PostScript . 96
fonts, searching . 13
fonts, special . 103
footers . 92, 133
footers [ms] . 42
footnotes . 19
footnotes [ms] . 41
form letters . 146
format of font description file 181
format of font description files 182

224 The GNU Troff Manual

format of font files 182
format of register (\g) 66
formats, assigning (af) 65
formats, file . 167
fp request, and font translations 96
fp request, incompatibilities with at&t

troff . 160
fractional point sizes 111, 160
fractional type sizes 111, 160
french-spacing . 50
fspecial request, and font styles 97
fspecial request, and font translations

. 96
fspecial request, and imitating bold

. 105
ft request, and font translations 96

G
geqn, invoking . 163
geqn, the program 163
ggrn, invoking . 163
ggrn, the program 163
glossary-style list, example markup [ms]

. 35
glyph . 99
glyph for line drawing 130
glyph pile (\b) . 132
glyph properties (cflags) 101
glyph, box rule (\[br]) 130
glyph, constant space 105
glyph, defining (char) 102
glyph, for line drawing 129
glyph, for margins (mc) 151
glyph, italic correction (\/) 107
glyph, leader repetition (lc) 81
glyph, left italic correction (\,) 107
glyph, numbered (\N) 85, 101
glyph, removing definition (rchar) . . . 103
glyph, soft hyphen (hy) 75
glyph, tab repetition (tc) 79
glyph, underscore (\[ru]) 129
glyphs, available, list (groff char(7) man

page) . 100
glyphs, output, and input characters,

compatibility with at&t troff . . 160
glyphs, overstriking (\o) 128
glyphs, unnamed. 101
glyphs, unnamed, accessing with \N . . 183
GNU-specific register (.g) 67
gpic, invoking . 163
gpic, the program 163

grap, the program 163

gray shading (\D’f ...’) 131

grefer, invoking . 163

grefer, the program 163

grn, the program 163

grodvi, invoking . 165

grodvi, the program 165

groff – what is it? . 1

groff capabilities . 3

groff invocation . 7

groff, and pi request 147

GROFF_BIN_PATH, environment variable
. 12

GROFF_COMMAND_PREFIX, environment
variable . 11

GROFF_FONT_PATH, environment variable
. 12, 13

GROFF_TMAC_PATH, environment variable
. 12

GROFF_TMPDIR, environment variable . . . 12

GROFF_TYPESETTER, environment variable
. 12

grohtml, invoking 165

grohtml, registers and strings 166

grohtml, the program 9, 165

grolbp, invoking . 165

grolbp, the program 165

grolj4, invoking . 165

grolj4, the program 165

grops, invoking . 165

grops, the program 165

grotty, invoking . 165

grotty, the program 165

gsoelim, invoking 163

gsoelim, the program 163

gtbl, invoking . 163

gtbl, the program 163

gtroff, identification register (.g) 67

gtroff, interactive use 155

gtroff, output . 167

gtroff, process ID register ($$) 67

gtroff, reference . 49

gxditview, invoking 166

gxditview, the program 166

K: Concept Index 225

H
hanging indentation [man] 23
hcode request, and glyph definitions . . 102
headers . 92, 133
headers [ms] . 42
height, font, changing (\H) 104
high-water mark register (.h) 138
history . 1
home directory . 12
horizontal input line position register (hp)

. 128
horizontal input line position, saving (\k)

. 128
horizontal line, drawing (\l) 129
horizontal motion (\h) 127
horizontal output line position register

(.k) . 128
horizontal resolution register (.H) 66
horizontal space (\h) 127
horizontal space, unformatting 115
hours, current time (hours) 66
hpf request, and hyphenation language

. 75
hw request, and hyphenation language

. 75
hy glyph, and cflags 102
hyphen, explicit (\%) 72
hyphenated lines, consecutive (hlm) . . . 72
hyphenating characters 102
hyphenation . 49
hyphenation character (\%) 73
hyphenation code (hcode) 74
hyphenation language register (.hla) . . 75
hyphenation margin (hym) 74
hyphenation margin register (.hym) . . . 75
hyphenation patterns (hpf) 73
hyphenation restrictions register (.hy)

. 72
hyphenation space (hys) 75
hyphenation space register (.hys) 75
hyphenation, disabling (\%) 73
hyphenation, manipulating 71

I
i unit . 51
i/o. 145
IBM cp1047 . 9
identifiers . 54
identifiers, undefined 55
ie request, and warnings 157
if request, and the ‘!’ operator 53

if request, operators to use with 117
if-else . 118
imitating bold face (bd) 105
implementation differences. 159
implicit breaks of lines 50
implicit line breaks 50
in request, causing implicit linebreak . . 68
in request, using + and - 53
inch unit (i) . 51
including a file (so) 145
incompatibilities with at&t troff . . . 159
increment value without changing the

register . 65
increment, automatic 64
indentaion, resetting to default [man] . . 24
indentation (in) . 87
index, in macro package 19
indirect assignments 63
input and output requests 145
input characters and output glyphs,

compatibility with at&t troff . . 160
input characters, invalid 54
input conventions . 51
input file name, current, register (.F) . . 66
input level in delimited arguments . . . 159
input line continuation (\) 90
input line number register (.c, c.) 67
input line number, setting (lf) 154
input line position, horizontal, saving (\k)

. 128
input line trap, setting (it) 136
input line traps . 136
input line traps and interrupted lines

(itc) . 136
input line, horizontal position, register

(hp) . 128
input stack, backtrace (backtrace) . . . 155
input stack, setting limit 156
input token. 152
input, 8-bit . 183
input, standard, reading from (rd) . . . 146
inserting horizontal space (\h) 127
installation . 187
interactive use of gtroff 155
intermediate output 167
interpolating registers (\n). 63
interpolation of strings (*) 113
interrupted line . 90
interrupted line register (.int) 91
interrupted lines and input line traps

(itc) . 136
introduction . 1

226 The GNU Troff Manual

invalid characters for trf request 146
invalid input characters 54
invocation examples 13
invoking geqn . 163
invoking ggrn . 163
invoking gpic . 163
invoking grefer . 163
invoking grodvi . 165
invoking groff . 7
invoking grohtml 165
invoking grolbp . 165
invoking grolj4 . 165
invoking grops . 165
invoking grotty . 165
invoking gsoelim 163
invoking gtbl . 163
invoking gxditview 166
italic correction (\/) 107
italic fonts [man] . 24
italic glyph, correction after roman glyph

(\,) . 107
italic glyph, correction before roman glyph

(\/) . 107

J
justifying text . 68
justifying text (rj) 71

K
keep . 18
keep, floating . 18
keeps [ms] . 38
kerning and ligatures 106
kerning enabled register (.kern) 106
kerning, activating (kern) 106
kerning, track . 106

L
last-requested point size registers (.psr,

.sr) . 112
latin-1, encoding . 9
layout, line . 87
layout, page . 91
lc request, and glyph definitions 102
leader character. 80
leader character, and translations 85
leader character, non-interpreted (\a) . . 80
leader repetition character (lc) 81

leaders . 80
leading . 109
leading spaces . 49
leading spaces with ds 113
left italic correction (\,) 107
left margin (po) . 87
left margin, how to move [man] 23
length of a string (length) 116
length of line (ll) . 87
length of page (pl) 91
length of title line (lt) 92
letters, form . 146
level of warnings (warn) 157
ligature . 99
ligatures and kerning 106
ligatures enabled register (.lg) 106
ligatures, activating (lg) 106
limitations of \b escape 132
line break . 15, 50, 68
line break (br) . 17
line breaks, with vertical space [man] . . . 24
line breaks, without vertical space [man]

. 24
line control . 90
line dimensions . 87
line drawing glyph 129, 130
line indentation (in) 87
line layout . 87
line length (ll) . 87
line length register (.l) 90
line number, input, register (.c, c.) . . . 67
line number, output, register (ln) 67
line numbers, printing (nm) 150
line space, extra post-vertical (\x). . . . 111
line space, extra pre-vertical (\x). 111
line spacing register (.L) 76
line spacing, post-vertical (pvs) 111
line thickness (\D’t ...’) 132
line, blank . 50
line, drawing (\D’l ...’) 130
line, empty (sp) . 16
line, horizontal, drawing (\l) 129
line, implicit breaks 50
line, input, continuation (\). 90
line, input, horizontal position, register

(hp) . 128
line, input, horizontal position, saving (\k)

. 128
line, interrupted . 90
line, output, continuation (\c) 90
line, output, horizontal position, register

(.k) . 128

K: Concept Index 227

line, vertical, drawing (\L) 130
line-tabs mode . 80
lines, blank, disabling 77
lines, centering (ce). 16, 70
lines, consecutive hyphenated (hlm) . . . 72
lines, interrupted, and input line traps

(itc) . 136
list . 18
list of available glyphs (groff char(7) man

page) . 100
ll request, using + and - 53
location, vertical, page, marking (mk)

. 125
location, vertical, page, returning to

marked (rt) . 125
logical operators . 53
long names . 159
loops and conditionals 117
lq glyph, and lq string [man] 25
ls request, alternative to (pvs) 111
lt request, using + and - 53

M
m unit . 52
M unit . 52
machine unit (u) . 51
macro basics . 15
macro directories . 12
macro files, searching 12
macro name register (\$0) 124
macro names, starting with [or], and

refer . 54
macro packages . 4, 21
macro packages, structuring the source

code . 56
macro, appending (am) 122
macro, arguments (\$) 124
macro, creating alias (als) 116
macro, end-of-input (em) 136
macro, removing (rm) 116
macro, renaming (rn) 116
macros . 58
macros for manual pages [man] 22
macros, recursive 120
macros, searching . 12
macros, shared name space with strings

and diversions 114
macros, tutorial for users 15
macros, writing . 121
major quotes . 18
major version number register (.x) 67

man macros . 22
man macros, bold face 24
man macros, default indentation 25
man macros, empty space before a

paragraph . 25
man macros, hanging indentation 23
man macros, how to set fonts 24
man macros, italic fonts 24
man macros, line breaks with vertical space

. 24
man macros, line breaks without vertical

space . 24
man macros, moving left margin 23
man macros, resetting default indentation

. 24
man macros, tab stops 25
man pages. 21
manipulating filling and adjusting 68
manipulating hyphenation 71
manipulating spacing. 76
manual pages . 21
margin for hyphenation (hym) 74
margin glyph (mc) 151
margin, bottom . 91
margin, left (po) . 87
margin, top . 91
mark, high-water, register (.h) 138
marking vertical page location (mk) . . . 125
maximum values of Roman numerals . . 66
mdoc macros . 26
me macro package . 48
measurement unit . 51
measurements . 51
measurements, specifying safely 52
minimum values of Roman numerals . . 66
minor version number register (.y) 67
minutes, current time (minutes) 66
mm macro package . 48
mode for constant glyph space (cs) . . 105
mode, compatibility 159
mode, copy-in . 123
mode, copy-in, and write requests . . . 148
mode, fill . 50, 70, 157
mode, fill (fi) . 68
mode, fill, and \c . 91
mode, line-tabs . 80
mode, no-fill (nf) . 68
mode, no-fill, and \c 91
mode, no-space (ns) 77
mode, nroff . 86
mode, safer 10, 12, 145, 147, 148
mode, troff . 86

228 The GNU Troff Manual

mode, unsafe 10, 12, 145, 147, 148
month of the year register (mo) 67
motion operators . 53
motion, horizontal (\h) 127
motion, vertical (\v) 126
motions, page . 125
mounting font (fp) 98
ms macros . 26
ms macros, accent marks. 44
ms macros, body text 31
ms macros, cover page 29
ms macros, creating table of contents . . 43
ms macros, differences from at&t 47
ms macros, displays 38
ms macros, document control registers

. 27
ms macros, equations 40
ms macros, figures . 40
ms macros, footers 42
ms macros, footnotes 41
ms macros, general structure 26
ms macros, headers 42
ms macros, headings 33
ms macros, highlighting 33
ms macros, keeps . 38
ms macros, lists . 34
ms macros, margins 42
ms macros, multiple columns 42
ms macros, nested lists 37
ms macros, page layout 41
ms macros, paragraph handling. 31
ms macros, references 40
ms macros, special characters 44
ms macros, strings 44
ms macros, tables . 40
multi-file documents 154
multi-line strings 113
multi-page table, example markup [ms]

. 41
multiple columns [ms] 42

N
n unit . 52
name space, common, of macros,

diversions, and strings 114
named character (\C) 101
names, long . 159
ne request, and the .trunc register . . . 135
ne request, comparison with sv 94
negating register values 62
nested assignments 63

nested diversions . 138
nested lists [ms] . 37
new page (bp) . 16, 93
newline character 54, 59
newline character, and translations 85
newline character, in strings, escaping

. 113
newline, final, stripping in diversions

. 115
next file, processing (nx) 146
next free font position register (.fp) . . . 98
nf request, causing implicit linebreak . . 68
nl register, and .d 138
nl register, difference to .h 138
nm request, using + and - 53
no-break control character (’) 56
no-break control character, changing (c2)

. 82
no-fill mode (nf) . 68
no-fill mode, and \c 91
no-space mode (ns) 77
node, output . 152
nr request, and warnings 158
nr request, using + and - 53
nroff mode . 86
nroff, the program 2
number of arguments register (.$) . . . 123
number register, creating alias (aln) . . . 63
number register, removing (rr) 63
number register, renaming (rnn) 63
number registers, dumping (pnr) 155
number, input line, setting (lf) 154
number, page (pn) 93
numbered glyph (\N) 85, 101
numbered list, example markup [ms] . . . 35
numbers, and delimiters 59
numbers, line, printing (nm) 150
numerals, Roman . 65
numeric expression, valid 53

O
offset, page (po) . 87
open request, and safer mode 10
opena request, and safer mode 10
opening file (open) 148
operator, scaling . 53
operators, arithmetic 53
operators, as delimiters 59
operators, comparison 53
operators, extremum (>?, <?) 53
operators, logical . 53

K: Concept Index 229

operators, motion . 53
operators, unary . 53
options . 7
order of evaluation in expressions 53
orphan lines, preventing with ne 93
os request, and no-space mode 94
output and input requests 145
output device name string register (.T)

. 9, 68
output device usage number register (.T)

. 9
output devices 4, 165
output glyphs, and input

characters,compatibility with at&t
troff . 160

output line number register (ln) 67
output line, continuation (\c) 90
output line, horizontal position, register

(.k) . 128
output node . 152
output request, and \! 140
output, flush (fl) 155
output, gtroff . 167
output, intermediate 167
output, suppressing (\O) 143
output, transparent (\!, \?) 139
output, transparent (cf, trf) 146
output, transparent, incompatibilities with

at&t troff . 160
output, troff . 167
overlapping characters. 102
overstriking glyphs (\o) 128

P
p unit . 51
P unit . 51
packages, macros . 21
padding character, for fields (fc) 81
page break, conditional (ne) 93
page control . 93
page footers . 133
page headers . 133
page layout . 91
page layout [ms] . 41
page length (pl) . 91
page length register (.p). 91
page location traps. 133
page location, vertical, marking (mk) . . 125
page location, vertical, returning to

marked (rt) . 125
page motions . 125

page number (pn) . 93
page number character (%) 92
page number character, changing (pc)

. 93
page number register (%) 93
page offset (po) . 87
page, new (bp) . 93
paper formats . 19
paragraphs . 17
parameters . 123
parentheses . 53
path, for font files . 13
path, for tmac files 12
patterns for hyphenation (hpf) 73
pi request, and groff 147
pi request, and safer mode 10
pic, the program 163
pica unit (P) . 51
pile, glyph (\b) . 132
pl request, using + and - 53
planting a trap . 133
platform-specific directory 13
pn request, using + and - 53
po request, using + and - 53
point size registers (.s, .ps) 109
point size registers, last-requested (.psr,

.sr) . 112
point sizes, changing (ps, \s) 109
point sizes, fractional 111, 160
point unit (p) . 51
polygon, drawing (\D’p ...’) 131
polygon, solid, drawing (\D’P ...’) . . 132
position of lowest text line (.h) 138
position, absolute, operator (|) 53
position, horizontal input line, saving (\k)

. 128
position, horizontal, in input line, register

(hp) . 128
position, horizontal, in output line,

register (.k) . 128
position, vertical, in diversion, register

(.d) . 138
positions, font . 98
post-vertical line spacing 111
post-vertical line spacing register (.pvs)

. 111
post-vertical line spacing, changing (pvs)

. 111
postprocessor access 149
postprocessors . 4
PostScript fonts . 96
PostScript, bounding box 152

230 The GNU Troff Manual

PostScript, embedding 165
prefix, for commands 11
preprocessor, calling convention 25
preprocessors. 4, 163
previous font (ft, \f[], \fP) 95
print current page register (.P) 11
printing backslash (\\, \e, \E, \[rs])

. 60, 160
printing line numbers (nm) 150
printing to stderr (tm, tm1, tmc) 154
printing, zero-width (\z, \Z) 128, 129
process ID of gtroff register ($$) 67
processing next file (nx) 146
properties of characters (cflags) 101
properties of glyphs (cflags) 101
ps request, and constant glyph space

mode . 105
ps request, incompatibilities with at&t

troff . 160
ps request, using + and - 53
ps request, with fractional type sizes . . 111
pso request, and safer mode 10
pvs request, using + and - 53

Q
quotes, major . 18
quotes, trailing . 113

R
ragged-left . 69
ragged-right . 69
rc request, and glyph definitions 102
read-only register, changing format 66
reading from standard input (rd) 146
recursive macros . 120
refer, and macro names starting with [

or] . 54
refer, the program 163
reference, gtroff . 49
references [ms] . 40
register, creating alias (aln) 63
register, format (\g) 66
register, removing (rr) 63
register, renaming (rnn) 63
registers . 61
registers specific to grohtml 166
registers, built-in . 66
registers, interpolating (\n) 63
registers, setting (nr, \R) 61
removing diversion (rm) 116

removing glyph definition (rchar) 103
removing macro (rm) 116
removing number register (rr) 63
removing request (rm) 116
removing string (rm) 116
renaming diversion (rn) 116
renaming macro (rn) 116
renaming number register (rnn) 63
renaming request (rn) 116
renaming string (rn) 116
request arguments 57
request, removing (rm) 116
request, renaming (rn) 116
request, undefined 60
requests . 56
requests for drawing 129
requests for input and output 145
resolution, horizontal, register (.H) 66
resolution, vertical, register (.V) 66
returning to marked vertical page location

(rt) . 125
revision number register (.Y) 67
rf, the program . 1
right-justifying (rj) 71
rj request, causing implicit linebreak . . 68
rn glyph, and cflags 102
roff, the program . 1
roman glyph, correction after italic glyph

(\/) . 107
roman glyph, correction before italic glyph

(\,) . 107
Roman numerals . 65
Roman numerals, maximum and minimum

. 66
rq glyph, and rq string [man] 25
rq glyph, at end of sentence 50, 102
rt request, using + and - 53
ru glyph, and cflags 102
runoff, the program 1

S
s unit . 52, 111
safer mode 10, 12, 145, 147, 148
saving horizontal input line position (\k)

. 128
scaling operator . 53
searching fonts . 13
searching macro files 12
searching macros . 12
seconds, current time (seconds) 66
sentence space . 50

K: Concept Index 231

sentence space size register (.sss) 70
sentences . 49
setting diversion trap (dt) 135
setting end-of-input trap (em) 136
setting input line number (lf) 154
setting input line trap (it) 136
setting registers (nr, \R) 61
shading filled objects (\D’f ...’) 131
shc request, and translations 85
site-specific directory 13
size of sentence space register (.sss) . . 70
size of type . 109
size of word space register (.ss) 70
sizes . 109
sizes, fractional 111, 160
slant, font, changing (\S) 104
soelim, the program 163
soft hyphen character, setting (shc) . . . 75
soft hyphen glyph (hy) 75
solid circle, drawing (\D’C ...’) 131
solid ellipse, drawing (\D’E ...’) 131
solid polygon, drawing (\D’P ...’) . . . 132
sp request, and no-space mode 77
sp request, causing implicit linebreak . . 68
space between sentences 50
space between sentences register (.sss)

. 70
space between words register (.ss) 70
space character . 59
space character, zero width (\&) . . 57, 106,

129
space characters, in expressions 53
space, horizontal (\h) 127
space, horizontal, unformatting 115
space, unbreakable 127
space, vertical, unit (v) 52
space, width of a digit (\0) 127
spaces with ds . 113
spaces, leading and trailing 49
spacing . 16
spacing, manipulating 76
spacing, vertical . 109
special characters 85, 165
special characters [ms] 44
special fonts 99, 103, 183
special fonts, emboldening 105
special request, and font translations

. 96
spline, drawing (\D’~ ...’) 131
springing a trap . 133
stacking glyphs (\b). 132
standard input, reading from (rd) 146

stderr, printing to (tm, tm1, tmc) 154
stops, tabulator . 50
string arguments . 113
string expansion (*) 113
string interpolation (*) 113
string, appending (as). 116
string, creating alias (als) 116
string, length of (length) 116
string, removing (rm) 116
string, renaming (rn). 116
strings . 113
strings [ms] . 44
strings specific to grohtml 166
strings, multi-line 113
strings, shared name space with macros

and diversions 114
stripping final newline in diversions . . 115
structuring source code of documents or

macro packages 56
sty request, and changing fonts 95
sty request, and font positions 99
sty request, and font translations 96
styles, font . 96
substring (substring) 116
suppressing output (\O) 143
sv request, and no-space mode 94
switching environments (ev) 142
sy request, and safer mode 10
symbol . 99
symbol table, dumping (pm) 155
symbol, defining (char) 102
symbols, using . 99
system() return value register (systat)

. 148

T
tab character . 50, 59
tab character, and translations 85
tab character, non-interpreted (\t) 77
tab repetition character (tc) 79
tab settings register (.tabs) 79
tab stops . 50
tab stops [man] . 25
tab stops, for TTY output devices 79
tab, line-tabs mode 80
table of contents. 19, 81
table of contents, creating [ms] 43
tables [ms] . 40
tabs, and fields . 77
tabs, before comments. 60
tbl, the program 163

232 The GNU Troff Manual

text line, position of lowest (.h) 138
text, gtroff processing 49
text, justifying . 68
text, justifying (rj) 71
thickness of lines (\D’t ...’) 132
three-part title (tl) 92
ti request, causing implicit linebreak . . 68
ti request, using + and - 53
time, current . 148
time, current, hours (hours) 66
time, current, minutes (minutes) 66
time, current, seconds (seconds) 66
title line (tl) . 92
title line length register (.lt) 92
title line, length (lt) 92
title page, example markup 30
titles . 92
tkf request, and font styles 97
tkf request, and font translations 96
tkf request, with fractional type sizes

. 111
tl request, and mc 151
tmac, directory . 12
tmac, path . 12
TMPDIR, environment variable 12
token, input . 152
top margin . 91
top-level diversion 137
top-level diversion, and \! 140
top-level diversion, and \? 140
top-level diversion, and bp 93
tr request, and glyph definitions 102
tr request, and soft hyphen character . . 75
tr request, incompatibilities with at&t

troff . 160
track kerning . 106
track kerning, activating (tkf) 106
trailing quotes . 113
trailing spaces . 49
translations of characters 82
transparent characters 50, 102
transparent output (\!, \?) 139
transparent output (cf, trf) 146
transparent output, incompatibilities with

at&t troff . 160
trap, changing location (ch) 135
trap, distance, register (.t) 135
trap, diversion, setting (dt) 135
trap, end-of-input, setting (em) 136
trap, input line, setting (it) 136
trap, planting . 133
trap, springing . 133

traps . 133
traps, blank line . 136
traps, diversion . 135
traps, dumping (ptr). 155
traps, end-of-input 136
traps, input line . 136
traps, input line, and interrupted lines

(itc) . 136
traps, page location 133
trf request, and invalid characters . . . 146
trf request, causing implicit linebreak

. 68
trin request, and asciify 141
troff mode . 86
troff output . 167
truncated vertical space register (.trunc)

. 135
tutorial for macro users 15
type size . 109
type size registers (.s, .ps) 109
type sizes, changing (ps, \s) 109
type sizes, fractional 111, 160

U
u unit . 51
uf request, and font styles 97
ul glyph, and cflags 102
ul request, and font translations 96
unary operators . 53
unbreakable space. 127
undefined identifiers 55
undefined request . 60
underline font (uf) 105
underlining (ul) . 104
underlining, continuous (cu) 105
underscore glyph (\[ru]) 129
unformatting diversions (asciify) . . . 141
unformatting horizontal space 115
Unicode . 54, 101
unit, c . 51
unit, f . 52
unit, f, and colors 144
unit, i . 51
unit, m . 52
unit, M . 52
unit, n . 52
unit, p . 51
unit, P . 51
unit, s . 52, 111
unit, u . 51
unit, v . 52

K: Concept Index 233

unit, z . 52, 111
units of measurement 51
units, default . 52
unnamed glyphs . 101
unnamed glyphs, accessing with \N . . . 183
unsafe mode 10, 12, 145, 147, 148
user’s macro tutorial 15
user’s tutorial for macros 15
using symbols . 99
utf-8, encoding . 9

V
v unit . 52
valid numeric expression 53
value, incrementing without changing the

register . 65
variables in environment 11
version number, major, register (.x) . . . 67
version number, minor, register (.y) . . . 67
vertical line drawing (\L) 130
vertical line spacing register (.v) 110
vertical line spacing, changing (vs) . . . 110
vertical line spacing, effective value . . . 111
vertical motion (\v) 126
vertical page location, marking (mk) . . 125
vertical page location, returning to

marked (rt) . 125
vertical position in diversion register (.d)

. 138
vertical position trap enable register

(.vpt) . 133

vertical position traps, enabling (vpt)
. 133

vertical resolution register (.V) 66
vertical space unit (v) 52
vertical spacing . 109

W
warnings . 156, 157
warnings, level (warn) 157
what is groff?. 1
while . 119
while request, and the ‘!’ operator 53
while request, confusing with br 120
while request, operators to use with . . 117
whitespace characters 54
width escape (\w) 127
word space size register (.ss) 70
writing macros . 121
writing to file (write) 148

Y
year, current, register (year, yr) 67

Z
z unit . 52, 111
zero width space character (\&) . . 57, 106,

129
zero-width printing (\z, \Z) 128, 129

234 The GNU Troff Manual

	Introduction
	What Is groff?
	History
	groff Capabilities
	Macro Packages
	Preprocessors
	Output Devices
	Credits

	Invoking groff
	Options
	Environment
	Macro Directories
	Font Directories
	Invocation Examples
	grog

	Tutorial for Macro Users
	Basics
	Common Features
	Paragraphs
	Sections and Chapters
	Headers and Footers
	Page Layout
	Displays
	Footnotes and Annotations
	Table of Contents
	Indices
	Paper Formats
	Multiple Columns
	Font and Size Changes
	Predefined Strings
	Preprocessor Support
	Configuration and Customization

	Macro Packages
	man
	Options
	Usage
	Macros to set fonts
	Miscellaneous macros
	Predefined strings
	Preprocessors in man pages

	mdoc
	ms
	Introduction to ms
	General structure of an ms document
	Document control registers
	Margin Settings
	Text Settings
	Paragraph Settings
	Footnote Settings
	Miscellaneous Number Registers

	Cover page macros
	Body text
	Paragraphs
	Headings
	Highlighting
	Lists
	Indents
	Tab Stops
	Displays and keeps
	Tables, figures, equations, and references
	An example multi-page table
	Footnotes

	Page layout
	Headers and footers
	Margins
	Multiple columns
	Creating a table of contents
	Strings and Special Characters

	Differences from AT&T ms
	troff macros not appearing in groff
	groff macros not appearing in AT&T troff

	me
	mm

	gtroff Reference
	Text
	Filling and Adjusting
	Hyphenation
	Sentences
	Tab Stops
	Implicit Line Breaks

	Input Conventions
	Measurements
	Default Units

	Expressions
	Identifiers
	Embedded Commands
	Requests
	Request Arguments

	Macros
	Escapes
	Comments

	Registers
	Setting Registers
	Interpolating Registers
	Auto-increment
	Assigning Formats
	Built-in Registers

	Manipulating Filling and Adjusting
	Manipulating Hyphenation
	Manipulating Spacing
	Tabs and Fields
	Leaders
	Fields

	Character Translations
	Troff and Nroff Mode
	Line Layout
	Line Control
	Page Layout
	Page Control
	Fonts
	Changing Fonts
	Font Families
	Font Positions
	Using Symbols
	Special Fonts
	Artificial Fonts
	Ligatures and Kerning

	Sizes
	Changing Type Sizes
	Fractional Type Sizes

	Strings
	Conditionals and Loops
	Operators in Conditionals
	if-else
	while

	Writing Macros
	Copy-in Mode
	Parameters

	Page Motions
	Drawing Requests
	Traps
	Page Location Traps
	Diversion Traps
	Input Line Traps
	Blank Line Traps
	End-of-input Traps

	Diversions
	Environments
	Suppressing output
	Colors
	I/O
	Postprocessor Access
	Miscellaneous
	gtroff Internals
	Debugging
	Warnings

	Implementation Differences

	Preprocessors
	geqn
	Invoking geqn

	gtbl
	Invoking gtbl

	gpic
	Invoking gpic

	ggrn
	Invoking ggrn

	grap
	grefer
	Invoking grefer

	gsoelim
	Invoking gsoelim

	Output Devices
	Special Characters
	grotty
	Invoking grotty

	grops
	Invoking grops
	Embedding PostScript

	grodvi
	Invoking grodvi

	grolj4
	Invoking grolj4

	grolbp
	Invoking grolbp

	grohtml
	Invoking grohtml
	grohtml specific registers and strings

	gxditview
	Invoking gxditview

	File formats
	gtroff Output
	Language Concepts
	Separation
	Argument Units
	Document Parts

	Command Reference
	Comment Command
	Simple Commands
	Graphics Commands
	Device Control Commands
	Obsolete Command

	Intermediate Output Examples
	Output Language Compatibility

	Font Files
	DESC File Format
	Font File Format

	Installation
	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Request Index
	Escape Index
	Operator Index
	Register Index
	Macro Index
	String Index
	Glyph Name Index
	Font File Keyword Index
	Program and File Index
	Concept Index

